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Abstract  
 

Statistics Finland has relatively long experience in constructing indices of prices of old flats using the hedonic 

approach where regression analysis and classification of flats (i.e. stratification) are combined. Practically this 

means: First the price model is based on the fixed effect model applied for separate regions and second the 

quality adjustment is performed within each regional cell in a classification (i.e. inside stratums) using so called 

Oaxaca decomposition. The hedonic price index is computed by aggregating regional cell level (i.e. stratum 

level) quality adjusted prices using the logarithmic Laspeyres formula.  

 

In this study we develop hedonic price index for new flats. In outline, we use similar methods as in case of old 

flats, but we develop Oaxaca decomposition in the cell or stratum level for unweighted and weighted arithmetic 

and geometric means. For that we develop new theorem for price aggregation from observation level to stratums 

by logarithmic mean. The new theorem of price aggregation is performed to semilogarithmic price models. The 

stratum level Oaxaca decomposition, that is, quality adjusted price changes and quality corrections, are 

aggregated using several basic (i.e. Laspeyres, Paasche, log-Laspeyres, log-Paasche,…) and excellent index 

number formulas (i.e. Törnqvist, Fisher, Mongomery-Vartia,…). The construction strategy of index series in this 

study is based on the base strategy. By this strategy index series are free of chain error (or drift). 

 

Our test data is a high-quality register data on all free-market transactions of dwellings in new blocks of flats and 

terraced houses. Data includes statistical unit specific information of unit prices, quantities, values and of some 

unit specific quality characteristics form 2010/I to 2018/IV being quarter data. The quarter data includes about 

2000 – 3000 observation per a quarter.  

  



 

 

1 Introduction 

 

Price index number using matched pairs method (see, Bailey, Muth and Nourse, 1963; Case and Shiller, 1989; 

Quigley, 1995) is not available for New Blocks of Flats and Terraced Houses, because each transacted flat 

appears only once in data. In this study, we use a method that calculates price changes for stratified cross-

sectional samples of the data. The method combines relevant stratification, i.e. classification, of the studied topic 

on the one hand, and regression analysis of heterogeneous cross-sectional data, on the other. The index 

application of the method is based on the Oaxaca decomposition (Oaxaca, 1973), which breaks change in 

average prices (i.e. arithmetic and geometric) down into quality adjustment factors and price change standardized 

for quality. 

 

Koev (2003) shows excellent analysis of hedonic price index number using Oaxaca decomposition of relative 

change for unweighted geometric average prices for semi-logarithmic price models. In this study, we develop 

three similar new theorems of price aggregation in which logarithmic prices at the observation level are 

aggregated to stratum level, so that we get three Oaxaca decomposition based on weighted or unweighted 

arithmetic or weighted geometric averages. The analysis of both arithmetic averages is based on the properties of 

logarithmic mean (see Törnqvist, 1935, p. 35; Y. Vartia, 1976, p.25; Törnqvist, P. Vartia and Y. Vartia, 1985, p. 

44). We perform our analysis of index numbers using several basic (Laspeyres (L), log-Laspeyres (l), Log-

Paasche (p), Paasche (P)) and excellent index number formulas (Törnqvist (T), Montgomery-Vartia (MV), Sato-

Vartia (SV), Fisher (F)). 

The structure of the study is as follows: In chapter two we present notations. In chapter three we present the 

analysis of heterogeneous cross-sectional data, its stratification and estimation of unknown parameters of price 

models. Chapter four presents the price aggregation from observation level into strata. In chapter five we derive 

Oaxaca decomposition for different stratum level aggregates (i.e. unweighted and weighted arithmetic and 

geometric means).  In chapter five we show how different index number formulas may be applied consistently 

for different stratum aggregates. Chapter six presents the results of the study and Chapter seven concludes. 

The structure of study is based on three issues: 1. statistical inference of price models, 2. theory of price 

aggregation and 3. theory of hedonic price index numbers. In every part we use semi-logarithmic price model. 

  



 

 

 

2 Basic Concepts and Notation 

 

Our notation for the hedonic regression and for index number calculations is the following:  

 

Commodities: 𝑎1, 𝑎2, … , 𝑎𝑛𝑡
 are transactions of dwellings in new blocks of flats and terraced houses in period t. 

The number 𝑛𝑡 is about 2500.  

Time periods: t = 0, 1, 2, … are the compared situations and are quarters.  

Prices: 𝑝𝑖𝑡 is the unit price of 𝑎𝑖  in period t. 

Quantities: 𝑞𝑖𝑡   is the quantity of 𝑎𝑖  in period t. 

Explanatory variables in regressions: 𝒙𝑖𝑡 = (𝑥𝑖𝑡1 … 𝑥𝑖𝑡𝑘)′ is a k-vector of observed characteristics in period t. 

Values:𝑣𝑖𝑡 = 𝑞𝑖𝑡𝑝𝑖𝑡 is the value of 𝑎𝑖  in period t. 

Total value: 𝑉𝑡 = ∑ 𝑣𝑖𝑡𝑖  is the total value of all the commodities in period t. 

Total value ratio: 𝑉𝑡/0 = 𝑉𝑡 𝑉0⁄  is the total value ratio from period 0 to t.  

Price relatives: 𝑝𝑖
𝑡/0

= 𝑝𝑖𝑡 𝑝𝑖0⁄  is the price relative of 𝑎𝑖  from period 0 to t. 

Quantity relatives: 𝑞𝑖
𝑡/0

= 𝑞𝑖𝑡 𝑞𝑖0⁄ is the quantity relative of 𝑎𝑖  from period 0 to t. 

Value relatives: 𝑣𝑖
𝑡/0

= 𝑣𝑖𝑡 𝑣𝑖0⁄   is the value relative of 𝑎𝑖  from period 0 to t. 

Value shares: 𝑤𝑖𝑡 = 𝑣𝑖𝑡 ∑ 𝑣𝑖𝑡𝑖⁄  is the value share of 𝑎𝑖   in period t. 

 

 

Corresponding 𝑛𝑡-vectors are denoted by the same symbol without sub-index of dwellings:  

 

(1)  (𝒑𝑡, 𝒒𝑡 ,𝒗𝑡, 𝒘𝑡 , 𝒑𝑡/0, 𝒒𝑡/0, 𝒗𝑡/0) 
 

We assume that all prices and quantities are strictly positive (contain no zeros). This implies that all values, 

price, quantity and value relatives and value shares are also well-defined and strictly positive.  

 

3 Analysis of Heterogeneous Cross-sectional Data 

 

The analysis combines classification and typical regression analysis. In statistical terms, the method combines 

analysis of variance and typical regression analysis and is called as analysis of covariance model (se FE-model 

Hsiao, 1986 p.29-32).  

 

3.1 Classification of Observations 
 

We examine time periods t = 0,1,…,T and the finite set  𝐴 = {𝑎1, 𝑎2, … , 𝑎𝑛𝑡
} of dwellings from new blocks of 

flats and terraced houses. Each observation appears only once in the data and bilateral price links for 

homogeneous dwellings (matched pairs) cannot be applied. Solution for this kind of cases is to form 

classification of observations into micro classes or stratum 𝐴𝑘, k = 1,...,K, so that 𝐴𝑘 ∩ 𝐴𝑟 = ∅, ∀ 𝑘 ≠ 𝑟 and 

𝐴 = ⋃ 𝐴𝑘
𝐾
𝑘=1 . In this study the micro partition is based on twelve separate regions which are divided into four 

different types of flats (one-room, two-rooms, three-rooms or bigger in block of flats and terraced houses). So, 

the partition includes 48 separate micro class at all time period t. The idea is to aggregate observations into strata 

level and then calculate some appropriate indicator for price change for each stratum.  

 

As an example, we take one stratum 𝐴𝑘 ‘Two-rooms in Helsinki’ and show basic problems of the study. Price 

determination of dwellings depends on at least location area (big towns like Helsinki, Tampere and Espoo, and 



 

 

small municipals in NUTS2 regions), number of square meters of a dwelling, flat-type, distance from the center 

of municipal services and the owner of the building lot.  

Figure 1: Price changes of unweighted and weighted     Figure 2: Changes of unweighted arithmetic average 

geometric and arithmetic average prices in stratum        of quality characteristics in stratum ‘Helsinki 

‘Helsinki two-rooms’ from 2010/1 – 2018/41.                  two-rooms’ from 2010/1 – 2018/42. 

 

 

 

 

 

 

 

 

 

 

All differences are calculated with respect to 2010/1 and quality characteristics are: x1, number of square meters 

of a dwelling, x3, distance from the center of municipal services and x5, owner of the building lot.  

Figure one show actual or true price changes for unweighted and weighted arithmetic and geometric averages for 

stratum ‘Two-rooms in Helsinki’. Figure two show how unweighted arithmetic averages for quality 

characteristics changes at the same time. Figures tell us that price changes for different aggregates differ a little 

the weighted arithmetic average being the lowest. At the same time the quality characteristics vary much 

stronger, especially “the owner of a building lot”.  

 

It seems that the number of square meters and distance declines from 2010 up to 2018 and a building lot is 

increasingly rented. These two figures tell that each aggregate is not comparable in quality. Especially when 

these quality characteristics have significant effects on prices, we need to remove the quality differences from 

price index numbers based on unweighted or weighted arithmetic and geometric averages. For controlling the 

quality change of characteristics, we need regression analysis. 

 

 3.2  Specification of the Price Model 
 

Let’s examine the data generating process of flat prices for a given region r = 1, 2 ,… 12. Each region is 

stratified into four types of flats. The price equation for any region is specified as semi-logarithmic regression 

model, which is generally called to fixed-effects dummy-variable approach (Hsiao, 1986, s.29-32). We specify 

the model as linear in respect to parameters 

 

(2) log(𝑝𝑖𝑟𝑡) = 𝛼𝑟1𝑡 + ⋯ + 𝛼𝑟4𝑡 + 𝒙′
𝑖𝑟𝑡𝜷𝑟𝑡 + 𝜀𝑖𝑟𝑡 

 

 
1 DuG = price change of unweighted geometric mean, DwG = price change of weighted geometric mean,  

DuA = price change of unweighted arithmetic mean, DwA = price change of weighted arithmetic mean, 
2 quality characteristics: x1 = number of square meters of a dwelling, x3= distance from the center of municipal services and 

x5= owner of the building lot. 

  



 

 

where log(𝑝𝑖𝑟𝑡) represents flat i specific logarithmic unit price per square meter in region r in period t. k vector 

of parameters 𝜷𝑟𝑡 in the regression model are allowed to vary according to regional grouping and time. 

Parameters  𝛼𝑟1𝑡 , … 𝛼𝑟4𝑡 represent flat type effects in the region r in period t. The k vector 𝒙′
𝑖𝑟𝑡consists of 

exogenous independent variables (i.e. quality characteristics) typically used in empirical analysis of housing 

prices (number of square meters and its square root, distance by driving time to the gravitation point of different 

services like shopping center, municipal services and their square roots, owner of a building lot; own or rented). 

The equation (2) has non-linear square root terms in number of square meters and distance in driving times. 

Term 𝜀𝑖𝑟𝑡 is random error term, which does not contain systematic information about the data generating process 

of flat prices. It is assumed, that  𝐸(𝜀𝑖𝑟𝑡|𝒙′
𝑖𝑟𝑡) = 0 and 𝑉𝑎𝑟(𝜀𝑖𝑟𝑡|𝒙′

𝑖𝑟𝑡) = 𝜎𝑟𝑡
2 < ∞. In our model specification, 

the error covariance matrix is diagonal – a most natural situation for cross-sectional data. 

 

3.3  Estimation of the Price Model 
 

Estimation of unknown parameters follows the ordinary-least-squares (OLS) method, where - under the 

properties 𝜀𝑖𝑟𝑡 – the OLS estimators are the best linear unbiased estimators (BLUE). The OLS estimators are 

obtained by minimizing the residual sum of squares. For apprehension of our study we use two step OLS method 

(see Davidson & MacKinnon, 1993, p. 19-25), where we transform observations as deviation of means with 

respect to our partition. Practically this means that each region (twelve separate region) are partitioned into four 

types of flats.  So, in our case, the OLS estimator for 𝜷𝑟𝑡 is 

 

(3)  𝜷̂𝑟𝑡 = [∑ ∑ (𝒙𝑖𝑟𝑘𝑡 − 𝒙̅𝑟𝑘𝑡)4
𝑘=1 (𝒙𝑖𝑟𝑘𝑡 − 𝒙̅𝑟𝑘𝑡)′𝑛𝑟

𝑖=1 ]
−1

∑ ∑ (𝒙𝑖𝑟𝑘𝑡 − 𝒙̅𝑟𝑘𝑡)4
𝑘=1

𝑛𝑟
𝑖=1 (𝑙𝑜𝑔(𝑝𝑖𝑟𝑘𝑡) − 𝑙𝑜𝑔(𝑝̅𝑘𝑟𝑡

𝑢𝐺 ))

  

where 𝑙𝑜𝑔(𝑝𝑖𝑟𝑘𝑡) is observed logarithmic price per square meter for i belonging to strata k in region r in period t 

and the elements of vector 𝒙𝑖𝑟𝑘𝑡 are corresponding exogenous explanatory variables (i.e. so-called quality 

characteristics). The term 𝑙𝑜𝑔(𝑝̅𝑘𝑟𝑡
𝑢𝐺 )  is the arithmetic average of logarithmic flat prices (i.e. unweighted 

geometric average = uG) for strata k in region r in period t and elements of vector  𝒙̅𝑟𝑘𝑡 are arithmetic averages 

of explanatory variables in the same classes. The estimator is called also as the covariance estimator. In the 

second step partition-specific flat effects are estimated as  

 

(4)  𝛼̂𝑟𝑘𝑡 = 𝑙𝑜𝑔(𝑝̅𝑘𝑟𝑡
𝑢𝐺 ) − 𝒙̅′

𝑟𝑘𝑡𝜷̂𝑟𝑡 

According to the Frisch, Waugh and Lovell -theorem (Davidson & MacKinnon, 1993), the OLS –estimation of 

the slopes can always be carried out via centralized variables. The constant term is estimated by forcing the 

regression plane through the point of averages. This method is computationally extremely effective especially 

when partition includes thousands of strata (see Suoperä & Vartia, 2011). 

 

The form of expression of the OLS estimators - simply log-prices, quality characteristics and their arithmetic and 

geometric averages - is useful for our new theorems of price aggregation. The basic axioms of the OLS method 

are well-known: 1) the OLS residuals sum to zero, 2) the regression hyperplane passes through the means of the 

data and 3) the average of fitted values from regression equals the average of the actual values of prices. These 

axioms will be satisfied for all strata.  

 

We make distinction between the OLS estimation method and price aggregation – they may carry out separately, 

but such that for any price aggregates (i.e. unweighted or weighted arithmetic and geometric averages) these 

three axioms should be satisfied. The above unweighted geometric average is the simplest of them. Other three 

averages are unweighted arithmetic average and weighted arithmetic and geometric averages, which we derive in 

Chapter four. 

  



 

 

3.4  Estimation Results of the Price Model 

 

Our regression analysis for heterogeneously behaving cross-sections is standard statistical inference familiar to 

most statisticians, but how to present the multiplicity of the estimation results? We estimate twelve regional 

equations each having five explanatory variables and four strata according the flat type (block of flats: one-room, 

two-room, three-room or more and terraced houses). The number of estimates and their standard errors is 216, 

(that is 2*108) for each period. We have quarter data form nine years (2010-2018) meaning that just the number 

of estimates and their standard error is 1944. First time Suoperä (2004a, b, 2009a, b) and more elegantly Suoperä 

& Vartia (2011) show how the multiplicity of the estimation results for heterogeneously behaving cross-section 

may be presented. This approach is used again in this study.  

 

We use equation (4) presented in Appendix 1 to show how effectively the heterogeneously behaving cross-

section are estimated. First, we present the exogenous independent variables used in regressions and then the 

estimation results from eq. (4) in Appendix 1. 

 
Table 1: The exogenous independent variables used in the regional price models 

Independent 

variables 

Description of variable  

Flat type dummies Classify observations into four flat types: one-room, two-room, three-room or more 

and terraced houses 

𝑥1 Number of square meters of transacted flat  

𝑥2 = 𝑠𝑞𝑟𝑡(𝑥1) Square root of the number of square meters of transacted flat 

𝑥3 Distance from the center of municipal services 

𝑥4 = 𝑠𝑞𝑟𝑡(𝑥3) Square root of the 𝑥3 , distance from the center of municipal services 

𝑥5 Owner of the building lot: Dummy variable that gets value 1, when the building lot is 

rented and otherwise 0. 

 

  



 

 

 
Table 2: The estimation results for the price models in years 2017 and 2018 (t = 0 refers the whole year and 
other t = 1, 2, 3, 4 quarters of corresponding year). 

Year     2017     2017     2017     2017     2017     2018     2018     2018     2018     2018 

t        0        1        2        3        4        0        1        2        3        4 

𝑛𝑡    10759     2598     2762     2508     2891     9674     2418     2403     2395     2458 

Strata       48       48       48       48       48       48       48       48       48       48 

Adjr2 0.8112 0.8519 0.8381 0.8184 0.8177 0.8332 0.8500 0.8594 0.8231 0.8504 

RMSE 0.1233 0.1168 0.1180 0.1124 0.1165 0.1204 0.1141 0.1123 0.1165 0.1174 

𝛼̂𝑡 9.9870 9.8321 9.9680 10.0868 10.05556 9.9357 10.0930 9.9067 9.8981 10.0690 

se(𝛼̂𝑡) (0.0247) (0.0501) (0.0455) (0.0477) (0.0460) (0.0262) (0.0529) (0.0502) (0.0538) (0.0477) 

𝛽̂1𝑡 0.01758 0.01581 0.01662 0.01873 0.01815 0.01731 0.01870 0.01656 0.01689 0.02055 

se(𝛽̂1𝑡) (0.00044) (0.00087) (0.0008) (0.00088) (0.00080) (0.00047) (0.00094) (0.00087) (0.00095) (0.00083) 

𝛽̂2𝑡 -0.31838 -0.29166 -0.30485 -0.33571 -0.33186 -0.30682 -0.33913 -0.29004 -0.2978 -0.35709 

se(𝛽̂2𝑡) (0.0067) (0.0132) (0.0123) (0.0132) (0.0120) (0.0070) (0.0142) (0.0131) (0.01424) (0.01255) 

𝛽̂3𝑡 0.013531 -0.0272 0.023516 0.023521 0.00595 0.015629 0.012956 0.026981 0.0173 -0.00983 

se(𝛽̂3𝑡) (0.00059) (0.00101) (0.00093) (0.00116) (0.00311) (0.00127) (0.00153) (0.00340) (0.003838) (0.00329) 

𝛽̂4𝑡 -0.19646 -0.08807 -0.23375 -0.24617 -0.17212 -0.18717 -0.19314 -0.24502 -0.19053 -0.09306 

se(𝛽̂4𝑡) (0.00321) (0.0057) (0.00566) (0.00626) (0.01256) (0.00536) (0.00739) (0.01375) (0.015477) (0.01315) 

𝛽̂5𝑡 -0.11114 -0.11919 -0.12025 -0.09502 -0.11853 -0.09873 -0.08909 -0.09675 -0.09184 -0.11705 

se(𝛽̂5𝑡) (0.00278) (0.00509) (0.00500) (0.00504) (0.00492) (0.00266) (0.00496) (0.00506) (0.005252) (0.00519) 

𝛾𝑡 1 1 1 1 1 1 1 1 1 1 

se(𝛾𝑡) (0.00502) (0.00861) (0.00927) (0.01066) (0.01018) (0.00510) (0.00992) (0.00929) (0.010395) (0.00989) 

𝝀𝑡 1 1 1 1 1 1 1 1 1 1 

se(𝝀𝑡) (0.0060) (0.00888) (0.01156) (0.01194) (0.01007) (0.00572) (0.01153) (0.01020) (0.010981) (0.00975) 

 

 

The estimation results are summarized as: 

1. All parameters for representative behavior are statistically significant. 

2. ‘Flat-type’ indicators (i.e. 𝛾𝑡 ) for different regions are strongly significant and must be included into the 

price models  

3. The data should be analyzed by heterogeneously behaving cross-section (i.e. time and regionally varying 

betas; in Table parameters 𝝀𝑡). 

4. All quality characteristics have a negative effect on prices. 

 

To interpret the estimation results of eq. (1) in Appendix 1 we take partial derivatives with respect to number of 

square meters of transacted flat (𝑥1) and driving time (𝑥3), that is 

 

𝜕log (𝑝𝑖𝑟𝑡)

𝜕𝑥𝑖1𝑟𝑡
 =  𝛽̂1𝑟𝑡 + 𝛽̂2𝑟𝑡/𝑠𝑞𝑟𝑡(𝑥𝑖1𝑟𝑡), ∀ 𝑖 ∈  𝐴𝑟 and 

𝜕log (𝑝𝑖𝑟𝑡)

𝜕𝑥𝑖3𝑟𝑡
 =  𝛽̂3𝑟𝑡 + 𝛽̂4𝑟𝑡/𝑠𝑞𝑟𝑡(𝑥𝑖3𝑟𝑡), ∀ 𝑖 ∈  𝐴𝑟. 

 

When we calculate cumulative sums of partial derivates from ordered samples (i.e. 𝑥𝑖1, 𝑥𝑖3 are ordered starting 

from smallest), we get Figures 3 and 4. In Figure 3 we see that square meter prices fall when number of squares 

increase. The results are approximately equal compared to Koev (2003, p. 34) – square meter price of a 60 𝑚2 

flat is about 30 – 35 log-% lower compared to a 20 𝑚2 flat. 



 

 

 

Figure 3: The effect of size on the square meter of        Figure 4: The effect of distance on prices of apartment 

apartment (periods, 2017.m, 2018.m, m = 0,1,2,3,4)     (periods, 2017.m, 2018.m, m = 0,1,2,3,4) 

 

 

 

 

 

 

 

 

 

 

 

The effect of ‘distance’ on prices is also significant. Prices decline approximately 40 log-% after 10-kilometer 

distance. The ‘distance’-variable is very important explanatory variable in determination of flat prices in Finland.  

 

Next, we examine the price aggregation of estimated price models (1) (see Appendix 1) from the observation 

into aggregate level (i.e. strata level).  

 

4  Price Aggregation from Observations into Stratum Aggregates 
 

The most common method for price aggregation from observation into strata level (i.e. elementary aggregate 

level) is to choose equal weights for all observations. In this case the semi-logarithmic specification of estimated 

model (2) leads to an unweighted geometric average price (uG) at left side of (2) and at the right side of (2) to 

unweighted arithmetic average (uA) of independent explanatory variables or quality characteristics. The method 

is based on typical aggregation of unit prices in which all observations have the same weight and therefore 

contribute equally to stratum averages irrespective of their real quantitative categories. This is also our first 

method of price aggregation – subsequent three (unweighted arithmetic, and weighted arithmetic and geometric 

means) are more complicated. 

First, we define logarithmic mean for two positive numbers x and y as follows (L. Törnqvist, 1935, p. 35; Y. 

Vartia, 1976; L. Törnqvist, P. Vartia and Y. Vartia, 1985, p. 44) 

(5)       𝐿(𝑥, 𝑦) = (𝑦 − 𝑥) log (𝑦 𝑥)⁄⁄ , if x ≠ y  

                                     = x, if x = y 

 

The definition can also be expressed as log(𝑦 𝑥)⁄ = (𝑦 − 𝑥) 𝐿(𝑥, 𝑦)⁄ , when it connotes that the log change is a 

relative change in respect to the logarithmic mean. This indicator of relative change is a ratio that is symmetrical, 

additive and independent of measurement unit. 

  

  



 

 

 

Let us examine positive sets of numbers {𝑥1, 𝑥2, … , 𝑥𝑛 } and {𝑦1, 𝑦2, … , 𝑦𝑛 } and define their logarithmic mean  

 𝐿(∑ 𝑦𝑖
𝑛
𝑖 , ∑ 𝑥𝑖

𝑛
𝑖 ) =   

∑ 𝑦𝑖−∑ 𝑥𝑖
𝑛
𝑖

𝑛
𝑖

log(∑ 𝑦𝑖
𝑛
𝑖 ∑ 𝑥𝑖

𝑛
𝑖 )⁄

, or   

 log(∑ 𝑦𝑖
𝑛
𝑖 ∑ 𝑥𝑖

𝑛
𝑖 )⁄ = ∑

𝑦𝑖−𝑥𝑖

𝐿(∑ 𝑦𝑖,∑ 𝑥𝑖𝑖𝑖 )
𝑛
𝑖  

 

and by definition of logarithmic mean the above equation reduces to 

(6) log(∑ 𝑦𝑖
𝑛
𝑖 ∑ 𝑥𝑖

𝑛
𝑖 )⁄  = ∑

𝐿(𝑦𝑖 , 𝑥𝑖 )

𝐿(∑ 𝑦𝑖,∑ 𝑥𝑖𝑖𝑖 )𝑖  𝑙𝑜𝑔(𝑦𝑖 𝑥𝑖⁄ ) 

This equation is just what we need for aggregation of observed prices into arithmetic averages for stratum 

aggregates (Suoperä, 2006, p.4). The operational characteristics of (6) are so far difficult to see. If we concretize 

the expression by choosing: 𝑦𝑖 = 𝑣𝑖 = 𝑞𝑖𝑝𝑖  (i.e. values) and 𝑥𝑖 = 𝑞𝑖 (i.e. quantities), we get 

(7) log(∑ 𝑣𝑖
𝑛
𝑖 ∑ 𝑞𝑖

𝑛
𝑖 )⁄ = 𝑙𝑜𝑔(𝑝̅𝑤𝐴) = ∑

𝐿(𝑣𝑖 , 𝑞𝑖 )

𝐿(∑ 𝑣𝑖𝑖 ,∑ 𝑞𝑖𝑖 )𝑖  𝑙𝑜𝑔(𝑝𝑖) 

This is our new theorem of price aggregation – we see, that the argument of log-function in left side of (7) is the 

weighted arithmetic average (wA) of observed prices. When we choose: 𝑦𝑖 = 𝑣𝑖 = 𝑞𝑖𝑝𝑖  and 𝑥𝑖 = 𝑞𝑖 = 1, we get 

(8) log(∑ 𝑝𝑖
𝑛
𝑖 ∑ 𝑞𝑖

𝑛
𝑖 )⁄ = 𝑙𝑜𝑔(𝑛 ∙ 𝑝̅𝑢𝐴 𝑛⁄ ) = log (𝑝̅𝑢𝐴) = ∑

𝐿(𝑝𝑖 ,1 )

𝐿(∑ 𝑝𝑖𝑖 ,𝑛)𝑖  𝑙𝑜𝑔(𝑝𝑖) 

Now the argument of log-function is the unweighted arithmetic average (uA). Both principles of price 

aggregation have used in official production of statistics for rents of office and shop premises since 2002 

(Suoperä, 2002, 2006). In conclusion, we put together weights used in our price aggregation. 

 

Table 3: Weights for different elementary aggregates in price aggregation for semi-logarithmic price models. 

Strata aggregate Mathematical formula for weights 

Unweighted arithmetic average 

(uA) 𝑤𝑖
𝑢𝐴 =  

𝐿(𝑝𝑖  ,1 )

𝐿(∑ 𝑝𝑖𝑖 , 𝑛)
 

Weighted arithmetic average (wA) 
𝑤𝑖

𝑤𝐴 =
𝐿(𝑣𝑖  ,  𝑞𝑖 )

𝐿(∑ 𝑣𝑖𝑖 , ∑ 𝑞𝑖𝑖 )
 

Unweighted geometric average 

(uG) 
𝑤𝑖

𝑢𝐺 =
1

𝑛
, ∀𝑖 

Weighted geometric average (wG) 𝑤𝑖
𝑤𝐺 =

𝑞𝑖

∑ 𝑞𝑖𝑖
 

 

  



 

 

4.1 Price Aggregation for the Semi-logarithmic Price Model 

 

The aggregation of all variables of model (1) in Appendix 1 is guided by the three following mathematical 

characteristics: First, we demand that residuals for any single stratum sum up to zero. Second, the hypersurface 

of the regression model must always go through the averages of dependent and exogenous independent 

explanatory variables. Third, the mean of the fitted values, i.e. predictions of log-prices, must match precisely 

the arithmetic average of observed log-prices (i.e. OLS solution). These three axioms reveal that the dependent 

variable is decomposed into two orthogonal components of which the first is expressed as a linear combination 

of exogenous variables and the second as an error term (residual), which is orthogonal with the exogenous 

variables of the model. Practically this means that the OLS method satisfy all above properties first time at the 

strata level. We simplify our analysis to one stratum 𝐴𝑘, that is a subset of region r in time period t. Then we 

apply the above method explained in italics to aggregation of eq. (1) in Appendix 1. First, we define most simply 

weights, 𝑤𝑖𝑘𝑡 = 1/𝑛𝑡 (i.e. equal weights for all i), and aggregate estimated equation into stratum 𝐴𝑘, that is (note 

that in eq. (1),  𝜷̂𝑘𝑡 = 𝜷̂𝑟𝑡 , ∀𝑘 ∈ 𝑟) 

 

(9) ∑ 𝑤𝑖𝑘𝑡𝑖 log(𝑝𝑖𝑘𝑡) = ∑ 𝑤𝑖𝑘𝑡𝑖 (𝛼̂𝑘𝑡 + 𝒙′
𝑖𝑘𝑡𝜷̂𝑘𝑡) + ∑ 𝑤𝑖𝑘𝑡𝑖 𝜀𝑖̂𝑘𝑡 

For semi-logarithmic price model the estimate for ‘flat-type’ indicator in stratum 𝐴𝑘is 𝛼̂𝑘𝑡 = 𝑙𝑜𝑔(𝑝̅𝑘𝑡
𝑢𝐺) −

𝒙̅′
𝑘𝑡𝜷̂𝑘𝑡, where 𝑝̅𝑘𝑡

𝑢𝐺 is unweighted geometric average of prices (uG) and 𝒙̅′
𝑘𝑡 is arithmetic averages of 

explanatory variables (uA).  As we see, the right side of equation is divided into two parts which in the case of 

the OLS method may expressed as 

 

(10a) ∑ 𝑤𝑖𝑘𝑡𝑖 (𝛼̂𝑘𝑡 + 𝒙′
𝑖𝑘𝑡𝜷̂𝑘𝑡) = ∑ 𝑤𝑖𝑘𝑡𝑙𝑜𝑔(𝑝̅𝑘𝑡

𝑢𝐺) − ∑ 𝑤𝑖𝑘𝑡𝑖 𝒙̅′
𝑘𝑡𝜷̂𝑘𝑡𝑖 + ∑ 𝑤𝑖𝑘𝑡𝑖 𝒙′

𝑖𝑘𝑡𝜷̂𝑘𝑡 

(10b) ∑ 𝑤𝑖𝑘𝑡𝑖 𝜀𝑖̂𝑘𝑡 = ∑ 𝑤𝑖𝑘𝑡𝑖 log(𝑝𝑖𝑘𝑡) − ∑ 𝑤𝑖𝑘𝑡𝑙𝑜𝑔(𝑝̅𝑘𝑡
𝑢𝐺) + ∑ 𝑤𝑖𝑘𝑡𝑖 𝒙̅′

𝑘𝑡𝜷̂𝑘𝑡𝑖 − ∑ 𝑤𝑖𝑘𝑡𝑖 𝒙′
𝑖𝑘𝑡𝜷̂𝑖𝑘𝑡 

 

Next, we study suitable options for weights 𝑤𝑖𝑘𝑡 (see, Table 3). After simple algebra we get following 

stratum aggregates represented in Table 4. 
 
Table 4: Price aggregation from observations into stratum level for a semi-logarithmic model estimated by the 
OLS. 

Statistics Mathematical formula for 

weights 𝑤𝑖𝑘𝑡, ∀𝑖 ∈ 𝐴𝑘 

Stratum aggregate 

Unweighted arithmetic 

average (uA) 𝑤𝑖𝑘𝑡
𝑢𝐴 =  

𝐿(𝑝𝑖𝑘𝑡 ,1 )

𝐿(∑ 𝑝𝑖𝑘𝑡𝑖 , 𝑛)
 

log(𝑝̅𝑘𝑡
𝑢𝐴) = 𝛼̂𝑘𝑡

𝑢𝐴 + 𝒙̅′
𝑘𝑡
𝑢𝐴

𝜷̂𝑘𝑡,  

 

where  𝛼̂𝑘𝑡
𝑢𝐴 = 𝑙𝑜𝑔(𝑝̅𝑘𝑡

𝑢𝐴) − 𝒙̅′
𝑘𝑡
𝑢𝐴

𝜷̂𝑘𝑡 

Weighted arithmetic 

average (wA) 𝑤𝑖𝑘𝑡
𝑤𝐴 =

𝐿(𝑣𝑖𝑘𝑡  ,  𝑞𝑖𝑘𝑡  )

𝐿(∑ 𝑣𝑖𝑘𝑡𝑖 , ∑ 𝑞𝑖𝑘𝑡𝑖 )
 

log(𝑝̅𝑘𝑡
𝑤𝐴) = 𝛼̂𝑘𝑡

𝑤𝐴 + 𝒙̅′
𝑘𝑡
𝑤𝐴

𝜷̂𝑘𝑡,  

 

where  𝛼̂𝑘𝑡
𝑤𝐴 = 𝑙𝑜𝑔(𝑝̅𝑘𝑡

𝑤𝐴) − 𝒙̅′
𝑘𝑡
𝑤𝐴

𝜷̂𝑘𝑡 

Unweighted geometric 

average (uG) 
𝑤𝑖𝑘𝑡

𝑢𝐺 =
1

𝑛
 

log(𝑝̅𝑘𝑡
𝑢𝐺) = 𝛼̂𝑘𝑡 + 𝒙̅′

𝑘𝑡𝜷̂𝑘𝑡,  

 

where  𝛼̂𝑘𝑡 = 𝑙𝑜𝑔(𝑝̅𝑘𝑡
𝑢𝐺) − 𝒙̅′

𝑘𝑡𝜷̂𝑘𝑡 

Weighted geometric 

average (wG) 
𝑤𝑖𝑘𝑡

𝑤𝐺 =
𝑞𝑖𝑘𝑡

∑ 𝑞𝑖𝑘𝑡𝑖
 log(𝑝̅𝑘𝑡

𝑤𝐺) = 𝛼̂𝑘𝑡
𝑤𝐺 + 𝒙̅′

𝑘𝑡
𝑤𝐺

𝜷̂𝑘𝑡,  

 

where  𝛼̂𝑘𝑡
𝑤𝐺 = 𝑙𝑜𝑔(𝑝̅𝑘𝑡

𝑤𝐺) − 𝒙̅′
𝑘𝑡
𝑤𝐺

𝜷̂𝑘𝑡 

 

Table 4 defines our four stratum aggregates that are derived for the semi-logarithmic price models estimated by 

the OLS. As we see in Table 4, the standard textbook selection of weights gives standard OLS results at 

the stratum level (i.e. unweighted geometric average in above Table). All other three elementary aggregates are 

derived from the OLS solution. They have exactly similar form and are in fact reparametrized OLS solutions for 



 

 

unweighted arithmetic, weighted arithmetic and weighted geometric averages. They satisfy three basic axioms of 

the OLS method similarly as standard textbook OLS method, that is: 1. residuals vanish, 2. the hypersurface 

of the regression model goes through averages of the variables and 3. averages of predicted log-prices of the 

model match precisely the corresponding averages calculated from actual log-prices. 

 

Table 4 defines all that is necessary for construction of hedonic price index numbers for stratum 𝐴𝑘 , 𝑘 = 1, … , 𝐾. 

Next, we apply so called Oaxaca decomposition for different stratum aggregates to get strata level 

‘micro’ indices for actual price ratios, quality changes and quality adjusted price ratios. 
 

 

5  Hedonic Price Index Numbers and its Decomposition  

 

In this study, a hedonic price index depends on 1. data in question (quality adjusting), 2. the strategy used (base, 

chain or rather a mixture of them), 3. index number formula and 4. aggregate used in calculation (i.e. log(𝑝̅𝑘𝑡
𝑚) =

𝛼̂𝑘𝑡
𝑚 + 𝒙̅′

𝑘𝑡
𝑚

𝜷̂𝑘𝑡, for all m = 𝑢𝐴, 𝑤𝐴, 𝑢𝐺, 𝑤𝐺, and t = 0, 1, … see Table 4).  

 

The key problem of the chain type indices (i.e. strategy) is the chain error (or chain drift) that tends to grow 

when chaining is applied frequently – typically on a monthly or quarterly basis. So, because chain error is data 

contingent and realized only for a chain-type strategy, we abandon the chain and favor the base strategy. In this 

study we use the base strategy, where the base period is defined to be previous year, which is normalized as 

average quarter. In fact, we use similar strategy as in Finnish CPI applied to a scanner type complete micro data 

(see, Vartia, Suoperä, Nieminen & Montonen, 2018a, 2018b; Vartia, Suoperä, Nieminen & Markkanen, 2019). 

 

We analyze two sets of index number formulas. The first set is based on formulas using old or new weights and 

are called as a basic set of index numbers. Laspeyres (L) and Log-Laspeyres (l) uses base period weights (i.e. old 

weights) and Log-Paasche (p) and Paasche (P) instead uses observation period weights (i.e. new weights). The 

second set of index numbers include four formula: Montgomery-Vartia (MV), Törnqvist (T), Fisher (F) and Sato-

Vartia (SV). We call these index number formulas as excellent formula. For the fundamental analysis of these 

index number formula, see Vartia & Suoperä (2018). 

 

Normally index number theory is not applied to hedonic methods. Koev & Suoperä (2002), Koev (2003) and 

Suoperä (2002, 2006, 2010a, 2010b) make an exception for that and include index number theory to hedonic 

method to get hedonic price index numbers. We continue in this study alike and use typical notation familiar to 

index number theory (Vartia & Suoperä, 2017, 2018). 

 

 

5.1 Within Stratum Hedonic Quality Adjustment and its Decomposition  

 

We have all information necessary to define so called Oaxaca decomposition for our four aggregates 

presented in Table 4. For simplicity, we have two time periods, the base (t = 0, previous year) and the 

observation quarter of current year (t = 1) and only one stratum 𝐴𝑘. We calculate difference between these 

two price models (0, t) separately for each stratum aggregate indexed by subindex 𝑚 = 𝑢𝐴, 𝑤𝐴, 𝑢𝐺, 𝑤𝐺 (see 

Table 4), that is  

 

 log(𝑝̅𝑘1
𝑚 𝑝̅𝑘0

𝑚⁄ ) = 𝛼̂𝑘𝑡
𝑚 + 𝒙̅′

𝑘𝑡
𝑚

𝜷̂𝑘𝑡 − 𝛼̂𝑘0
𝐸 − 𝒙̅′

𝑘0
𝑚

𝜷̂𝑘0  

 

Defining first Oaxaca decomposition (1973) and then exp-transformation, we get 

 

(11) 𝑝̅𝑘1
𝑚 𝑝̅𝑘0

𝑚⁄ = 𝑒𝑥𝑝{(𝒙̅′
𝑘1
𝑚

− 𝒙̅′
𝑘0
𝑚

)𝜷̂𝑘1} ∙  𝑒𝑥𝑝{𝛼̂𝑘1
𝑚 − 𝛼̂𝑘0

𝑚 + 𝒙̅′
𝑘0
𝑚

(𝜷̂𝑘𝑡 − 𝜷̂𝑘0)}  



 

 

 

The left side in (11) is simply the price ratio for a given stratum aggregate m. We call this price ratio as ‘actual or 

true price change’ (= A) for aggregate m (see Table 4). The first term on right side is a ‘price change due to 

quality difference’ (= QC) of the sample mix at current year observation period valuation of the characteristics 

(see Table 1). The second term on right is a ‘quality adjusted price change’ (= QA) evaluated at standard point of 

quality, that is 𝒙̅′
𝑘0
𝑚

. 

 

Index number formula is not needed for compilation of price change for stratum 𝐴𝑘– the direct price link from 

period 0 to period t is based purely on ‘average statistics’ of equation (11). The left side of (11) simply tells that 

average prices in base 0 and observation period t depends on corresponding averages of quality characteristics. 

When these vector of averages (𝒙̅0, 𝒙̅𝑡) are not equal then the price ratio is not based on commodities that are 

comparable in quality. The price ratio of averages of ‘actual or true prices’, that is    𝑝̅𝐴
𝑡/0

= 𝑝̅𝑡(𝒙̅𝑡) 𝑝̅0(𝒙̅0)⁄  is 

not satisfactory choice for official price change statistics – the quality differences should be removed from it. We 

have two main choice for the standard quality point of quality characteristics – either 𝒙̅0 or 𝒙̅𝑡. The base period 

standard quality point 𝒙̅0 is estimated from previous year and 𝒙̅𝑡 from quarter of current year. Previous year (i.e. 

period 0) includes about fourfold observations compared to observation quarter and so statistical properties of  

𝒙̅0 favor to select it as standard quality point. The following table collect together all information from eq. (11) 

in terms of prices. 

 
Table 5: Components of (11) in price terms for any stratum aggregate m separately. 

 Price ratio Explicit formula 

Actual or true price change, 𝑝𝐴
𝑡/0

 𝑝̅𝑡(𝒙𝑡) 𝑝̅0(𝒙0)⁄  𝑒𝑥𝑝{(𝛼̂𝑡 + 𝒙𝑡
′ 𝜷̂𝑡) − (𝛼̂0 + 𝒙0

′ 𝜷̂0)} 

Quality adjusted price change, 𝑝𝑄𝐴
𝑡/0

 𝑝̅𝑡(𝒙0) 𝑝̅0(𝒙0)⁄  𝑒𝑥𝑝{(𝛼̂𝑡 + 𝒙0
′ 𝜷̂𝑡) − (𝛼̂0 + 𝒙0

′ 𝜷̂0)} 

Price change for quality correction of 

square meter, 𝑝𝑄𝐶,𝑥1

𝑡/0
 

𝑝̅𝑥1
𝑡 (𝑥̅1

𝑡 , 𝑥̅2
𝑡)/𝑝̅𝑥1

0 (𝑥̅1
0, 𝑥̅2

0) 𝑒𝑥𝑝{(𝑥̅1𝑡𝛽̂1𝑡  +  𝑥̅2𝑡𝛽̂2𝑡) − (𝑥̅10𝛽̂1𝑡 +  𝑥̅20𝛽̂2𝑡)} 

Price change for quality correction of 

distance, 𝑝𝑄𝐶,𝑥3

𝑡/0
 

𝑝̅𝑥3
𝑡 (𝑥̅3

𝑡 , 𝑥̅4
𝑡)/𝑝̅𝑥3

0 (𝑥̅3
0, 𝑥̅4

0)) 𝑒𝑥𝑝{(𝑥̅3𝑡𝛽̂3𝑡  +  𝑥̅4𝑡𝛽̂4𝑡) − (𝑥̅30𝛽̂3𝑡 + 𝑥̅40𝛽̂4𝑡)} 

Price change for quality correction of 

owner of building lot, 𝑝𝑄𝐶,𝑥5

𝑡/0
 

𝑝̅𝑥5
𝑡 (𝑥̅5

𝑡)/𝑝̅𝑥5
0 (𝑥̅5

0) 𝑒𝑥𝑝{(𝑥̅5𝑡𝛽̂5𝑡  −  𝑥̅50𝛽̂5𝑡)} 

 

Now the equation (11) may expressed by price ratios, that is 

 

(12)  𝑝𝐴
𝑡/0

≡  𝑝𝑄𝐶,𝑥1

𝑡/0
∙ 𝑝𝑄𝐶,𝑥3

𝑡/0
∙ 𝑝𝑄𝐶,𝑥5

𝑡/0
∙ 𝑝𝑄𝐴

𝑡/0
 

 

Each price ratio in (12) is estimated separately for a given price aggregate (i.e. 𝑚 = 𝑢𝐴, 𝑤𝐴, 𝑢𝐺, 𝑤𝐺). Each x-

variable - size of flat in square meters, distance and share of owner of a building lot - have negative effect on 

prices. When these x-variables are smaller than their standard quality point (i.e. 𝒙̅𝑡 −  𝒙̅0 < 𝟎), all quality 

corrections  𝑝𝑄𝐶,𝑥1

𝑡/0
, 𝑝𝑄𝐶,𝑥3

𝑡/0
,  𝑝𝑄𝐶,𝑥5

𝑡/0
 > 1. This means that we need to adjust actual price change 𝑝𝐴

𝑡/0
 just amount of 

quality corrections   𝑝𝑄𝐶,𝑥
𝑡/0

= 𝑝𝑄𝐶,𝑥1

𝑡/0
∙ 𝑝𝑄𝐶,𝑥3

𝑡/0
∙ 𝑝𝑄𝐶,𝑥5

𝑡/0
 downward to get quality adjusted price change  𝑝𝑄𝐴

𝑡/0
 which is 

standardized of quality. 

 

We have developed in addition to unweighted geometric average (that is a standard textbook method for semi-

logarithmic heterogeneously behaving cross-sections) three other aggregates and their index solution in the 

stratum level. Next, we present the hedonic price index numbers by traditional notation of index number theory. 

  



 

 

 5.2 Hedonic Price Index Numbers  
 

The equation (12) simply says that ‘actual or true price change’ (i.e. sub index A) of a given aggregate is divided 

in our case into four components – three of them are due to quality change (i.e. sub index QC) and last one is 

‘quality adjusted price change’ (= QA). Equations (11) and (12) are identities for any aggregation level for given 

index number formula and aggregate. For simplicity we define our index number to price-link from period 0 to 

period 1. Replacing period 1 by t we get our base strategy familiar to our CPI analysis based on scanner-type 

complete micro data (see for example Vartia, Suoperä, Nieminen & Montonen, 2018a, 2018b). In this strategy 

the base period is previous year normalized as average quarter and observation period t is a quarter of current 

year. This is most natural choice, because it is free of chain error (or drift).  

 

We analyze two sets of index number formulas. The first set is based on formulas using old (Laspeyres L and 

Log-Laspeyres l) or new weights (Log-Paasche p and Paasche P). These index number formulas are called as 

basic formulas. These formulas are data contingently biased and should be used. The second set of index 

numbers include four formulas: Montgomery-Vartia, MV, Törnqvist, T, Fisher, F and Sato-Vartia, SV). We call 

these index number formulas as excellent formulas. The fundamental analysis of these index number formulas, 

see Vartia & Suoperä (2018). 

In Table 6 we collect together all information that is necessary for calculation of price indices. Table 6 shows 

that all index number formulas are presented in multiplicative form, including Laspeyres and Paasche, which are 

derived from its logarithmic representations (see Vartia, 1976, p.128). Practically this means, that aggregation of 

price changes in (12) is done always much simpler in logarithmic form (i.e. additive form) and then transformed 

back as indices. As we have stressed, all formulas are evaluated separately for each component of (12) and 

separately for aggregate in question.  

Table 6: Necessary information for calculation of hedonic price indices for different formulas and aggregates 

(Vartia & Suoperä, 2017, 2018). 

Basic formula: Contingently biased index numbers  

Symbol for the 

formula 
𝑃1/0 Weights of the formula, 𝑤𝑖 

L 
∏(𝑝𝑘

1/𝑝𝑘
0)

𝑤𝑘
0

 𝑤𝑘
0 =

𝐿(𝑝𝑘
1𝑞𝑘
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These index number formulas are used when strata decompositions are aggregated into crude aggregates like 

‘flat-type’ -level in Finland etc. Aggregation of decomposition (12) are done in logarithmic form (i.e. in additive 

form) keeping stratum aggregate and index number formula fixed. 

 

6  Empirical Results  

 

6.1  Comparation of Stratum Statistics and Their Decomposition of ‘True or Actual 
Price Changes’ 

 

Our partition of transacted flats consists of 48 stratums (12 regions and every single one is divided into four flat-

type). For each stratum we calculate four types of aggregates (see Table 4), for which holds 

1. unweighted arithmetic average, uA ≥ uG, unweighted geometric average 

2. weighted arithmetic average, wA ≥ wG, weighted geometric average 

As an example, the following figures shows for stratum ‘Helsinki, two-rooms’ how significantly these 

aggregates deviate.   

The left-side figure presents deviation between unweighted arithmetic (DuA=log(uA/wA)) and geometric 

((DuG=log(uG/wA))) and weighted geometric averages ((DwG=log(wG/wA))) from weighted arithmetic 

averages (wA) in log-%. Here the largest deviation is about 7 log-%, but in some other strata it may be over 10 

log-%. The right-side figure present how much index series of weighted arithmetic average deviates from other 

aggregates in log-scale. Here almost as a rule the index series of geometric averages exceeds both index series of 

arithmetic averages. 

Figure 5: Ratio of averages with respect to                 Fiqure 6: Ratio of index series of averages with respect 

weighted arithmetic average in ‘Helsinki,                     to weighted arithmetic average in ‘Helsinki, two-rooms’ 

two-rooms’ (deviations log-%).                                     (deviations log-%). 

 

 

 

 

 

 

 

 

 

 

For construction of the official average price statistics difference between these four aggregates are unexpected 

large especially for geometric averages (yellow and red lines). Quite unexpectedly the index series of geometric 

averages exceeds the weighted arithmetic average about 4 – 5 log-%. Normally officially published average 

statistics are based on weighted arithmetic averages and we think it is most natural choice also for new blocks of 

  



 

 

flats and terraced house prices. So, our benchmark statistics is the weighted arithmetic average for which other 

aggregates are compared. 

 

6.2  Decomposition of Actual Price Change for Stratum 
 

The index number theory provides two main strategies for construction of index series: the base and the chain. 

Based on our multi period identity tests (Vartia, Suoperä, Nieminen & Montonen, 2018a) the chained type 

strategies almost always contain the chain error (or drift) that is contingent on data in question; somewhere the 

bias is harmless and somewhere severe. The base strategy is free of chain error, so we choose it as benchmark 

strategy for construction of index numbers. In the base strategy the base period may be defined various ways, 

e.g. certain week, month, quarter or for example previous year.  We recommend in this study a previous year 

normed to average quarter as a base period. In practice this means that we are interested in direct price-links, that 

is 0 → t, where base period 0 is a previous year normalized as average quarter and period t is a quarter of a 

current year. Always when a first quarter of a current year appears, we change our base period to previous year 

normalized as average quarter.  

 

Figure 7: Actual (A) and quality adjusted (QA) price     Figure 8: Corresponding indices for quality  

changes (weighted arithmetic average) in ‘Helsinki,     corrections (𝑄𝐶𝑥1
, 𝑄𝐶𝑥3

, 𝑄𝐶𝑥5
𝑄𝐶𝑥 = 𝑎𝑙𝑙 𝑡𝑜𝑔𝑒𝑡ℎ𝑒𝑟)  

two-rooms’ 2010 = 1                                                      in ‘Helsinki, two-rooms’, 2010 = 1 

 

 

 

 

 

 

 
 

 

 

 

 

Figure 9: Actual (A) and quality adjusted (QA) price     Figure 10: Corresponding indices for quality  

changes (weighted arithmetic average) in ‘Espoo,         corrections (𝑄𝐶𝑥1
, 𝑄𝐶𝑥3

, 𝑄𝐶𝑥5
, 𝑄𝐶𝑥 = 𝑎𝑙𝑙 𝑡𝑜𝑔𝑒𝑡ℎ𝑒𝑟), 

two-rooms’ 2010 = 1                                                      in ‘Espoo two-rooms’ 2010 = 1 

 

 

 

 

 

 

 
 

 

  

  



 

 

 

The decomposition (12) holds for every stratum. Practically this means that multiplying red lines for every t for 

example in Figures 7 and 8, we get the yellow lines in Figures 7 (i.e. 𝑝𝐴
𝑡/0

= 𝑝𝑄𝐶,𝑥
𝑡/0

∙ 𝑝𝑄𝐴
𝑡/0

, where   𝑝𝑄𝐶,𝑥
𝑡/0

= 𝑝𝑄𝐶,𝑥1

𝑡/0
∙

𝑝𝑄𝐶,𝑥3

𝑡/0
∙ 𝑝𝑄𝐶,𝑥5

𝑡/0
). 

The flat size (square meter), distance and owner of a building lot have negative effect on prices – when values of  

𝒙̅𝑡 variables exceeds (go under) their standard quality point 𝒙̅0 we should correct actual prices upward 

(downward) in period t to quality adjusted level evaluated at standard quality point 𝒙̅0. Both left-hand Figures 

shows that quality adjusted price changes are almost all the time below the price change of actual prices. This 

means that quality of flats has ‘increased’ especially for stratum ‘Espoo two-rooms’ from 2010 to 2018/4. 

Quality corrections behave heterogeneously for different stratums being significant role in determination of 

quality adjusted price changes.  

   

6.3  Decomposition for Price Index Numbers 
 

Index number formulas defined in Table 6 are used when strata decompositions are aggregated into crude 

aggregates - categories like ‘One-room in Finland’, ‘Terraced Houses in Finland’ etc. This will be done by 

following steps: 

1. Take logarithm of (12) (additive form such that all price ratios in (12) are in logarithmic form). 

2. Use index number formula (Table 6) in logarithmic form. 

3. Calculate log price change for each component of (12) separately using same index number formula. 

4. Take exp-transformation of each log price ratios. 

5. Do the steps 1 to 4 separately for each average m = 𝑢𝐴, 𝑤𝐴, 𝑢𝐺, 𝑤𝐺. 

 

Steps 1 – 5 gives us the hedonic price index number decomposition 

 

(13) 𝑃𝐴
𝑡/0

≡  𝑃𝑄𝐶,𝑥1

𝑡/0
∙ 𝑃𝑄𝐶,𝑥3

𝑡/0
∙ 𝑃𝑄𝐶,𝑥5

𝑡/0
∙ 𝑃𝑄𝐴

𝑡/0
 

 

It is important to keep index number formula P and average m fixed for steps one to four.  

 

Figure 11: Quality adjusted (QA) price index series      Figure 12: Quality adjusted (QA) price index series 

(m =weighted arithmetic average) for One-room in       (m = weighted arithmetic average) for Three-rooms or  

Finland, 2010 = 1                                                            more in Finland, 2010 = 1                                                       
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First, we compare basic index numbers (L = Laspeyres and P = Paasche) to excellent ones (MV = Montgomery-

Vartia, T = Törnqvist and F = Fisher). Figures 11 and 12 show that basic index number formulas are data  

contingently biased (see Vartia & Suoperä, 2018). The data contingent nature of bias is seen clearly - L is 

downward biased in left Figure but upward in right. These figures show that excellent index number formulas 

are very closely related. The same happens for any aggregation level. As result, the basic index number formulas 

should never be used, if excellent ones are available. 

 

Because excellent index number formulas (see Vartia & Suoperä, 2018) are very closely related, any of them 

may be used. We demonstrate our results by Törnqvist formula. For ‘One-room in Finland’ the quality 

corrections are very significant – flats are smaller, distance from point of municipal services is further and 

building lot is not so often rented – so, index series constructed by actual price changes (yellow line) exceed 

significantly index serie constructed for prices being comparable in quality (red line). The quality corrections 

together increase up to 15 log-% (red line in Figure 14). 

 

Figure 13: Actual (A) and quality adjusted (QA) price   Figure 14: Corresponding indices for quality  

changes (weighted arithmetic average) ‘One-room’      corrections (𝑄𝐶𝑥1
, 𝑄𝐶𝑥3

, 𝑄𝐶𝑥5
, 𝑄𝐶𝑥 = 𝑎𝑙𝑙 𝑡𝑜𝑔𝑒𝑡ℎ𝑒𝑟)  

in Finland, 2010 = 1, (P = Törnqvist).                            ‘One-room’ in Finland, 2010 = 1, (P = Törnqvist ). 

 

 

 

 

 

 

 
 

 

 

 

Figure 15: Actual (A) and quality adjusted (QA) price   Figure 16: Corresponding indices for quality  

changes (weighted arithmetic average) ‘Two-rooms’    corrections (𝑄𝐶𝑥1
, 𝑄𝐶𝑥3

, 𝑄𝐶𝑥5
, 𝑄𝐶𝑥 = 𝑎𝑙𝑙 𝑡𝑜𝑔𝑒𝑡ℎ𝑒𝑟)  

in Finland, 2010 = 1, (P = Törnqvist).                            ‘Two-rooms’ in Finland, 2010 = 1, (P = Törnqvist). 

 

 

 

 

 

 

 
 

 

 

  

  



 

 

 

For ‘Two-rooms in Finland’ the quality corrections are not as significant role compared to ‘One-room in 

Finland’. Especially the share of rented lots starts to increase in middle of time span (grey dashed line in Figure 

16). 

 

Figure 17: Actual (A) and quality adjusted (QA) price   Figure 18: Corresponding indices for quality  

changes (weighted arithmetic average) ‘Three-rooms    corrections (𝑄𝐶𝑥1
, 𝑄𝐶𝑥3

, 𝑄𝐶𝑥5
, 𝑄𝐶𝑥 = 𝑎𝑙𝑙 𝑡𝑜𝑔𝑒𝑡ℎ𝑒𝑟)  

or more’ in Finland, 2010 = 1, (P = Törnqvist).          ‘Three-rooms or more’ in Finland, 2010=1,(P= Törnqvist). 

 

 

 

 

 

 

 
 

 

 

 

For ‘Three-rooms or more in Finland’ quality characteristics behave most stable and actual and quality adjusted 

price changes deviate not so much compared to ‘One-room in Finland’ and ‘Two-rooms in Finland’. The quality 

adjustment is necessary also for ‘Three-rooms or more in Finland’ because for some price-links quality 

characteristics deviate significantly.   

 

The Figures 19 and 20 show how prices and quality characteristics have changed for ‘Terraced Houses in 

Finland’. The size of flat, distance and share of owner of a building lot increases in time. This means that actual 

prices in period t must increase to match the prices evaluated at standard quality point 𝒙̅0. Contrary to ‘Block of 

Flats’, index series of adjusted prices exceeds index series constructed for actual prices. 

 

Figure 19: Actual (A) and quality adjusted (QA) price   Figure 20: Corresponding indices for quality  

changes (weighted arithmetic average) ‘Terraced          corrections (𝑄𝐶𝑥1
, 𝑄𝐶𝑥3

, 𝑄𝐶𝑥5
, 𝑄𝐶𝑥 = 𝑎𝑙𝑙 𝑡𝑜𝑔𝑒𝑡ℎ𝑒𝑟)  

Houses’ in Finland, 2010 = 1, (P = Törnqvist).             ‘Terraced Houses’ in Finland, 2010 = 1, (P = Törnqvist). 

 

 

 

 

 

 

 

  

  



 

 

7  Conclusion 

 

Because transacted flat - new blocks of flats and terraced houses – emerges only once in data, index number 

theory based on bilateral or multilateral methods is not available for observations (i.e. matched pairs). 

Observations should aggregate into some appropriate partition, which in this study is based on 12 region each 

divided into four flat-type – block of flats into one-room, two-rooms and three-rooms or more and terraced 

houses into one class. Our partition includes 48 strata. We apply regression analysis to our data having described 

partition. Our regression analysis is based on heterogeneously behaving cross sections. We average our price 

models into strata level for each time period separately and define difference simply saying between periods 0 

and t. Whatever average of prices we use, they are not comparable in quality for price-link 0 → t – quality 

differences should be removed from actual or true price changes to get quality adjusted price change evaluated in 

standardized point of quality. For that we use so called hedonic or Oaxaca-decomposition.  

Normally decomposition is based on standard textbook solution, where price ratio of unweighted geometric 

average prices is decomposed into price change due to quality difference and quality adjusted price change 

evaluated at standard point of quality. This solution is not satisfactory for officially published average statistics, 

because unweighted geometric average prices deviates from weighted arithmetic average prices sometimes more 

than 10 log-%. So, we develop two new theorem of price aggregation for semi-logarithmic price models. We 

apply these theorems for estimated OLS solution and get two new hedonic decompositions based on weighted 

and unweighted average prices. We show that similar decomposition is possible also for weighted geometric 

average prices. We derive hedonic price decomposition for four averages one of which is standard textbook 

solution for unweighted geometric average prices.  

 

In strata level no index number formula is needed – hedonic price decomposition divides average price change 

into quality corrections and quality adjusted price change for all averages separately. We show that quality 

adjustment is necessary. Our benchmark decomposition is weighted arithmetic average. 

 

We use index numbers first time, when strata level decompositions are aggregated into crude aggregation level. 

We use basic and excellent index number formulas. Our construction strategy of index series is base strategy, 

where base period is previous year normalized as average quarter. Index series constructed by this strategy is 

free of chain error. As conclusion, basic index number formulas are data contingently biased and should not be 

used as official statistic. Instead, excellent index number formulas are very closely related – any of them may be 

selected to official production. 
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Appendix 1. Analysis and synthesis of price determination in Heterogeneous Cross-sections.   

 

Analogously with Suoperä & Vartia (2011, p.11-18) we define the estimated regression models as 

 

(1) log(𝑝𝑖𝑟𝑡) = 𝛼̂𝑟𝑘𝑡 + 𝒙′
𝑖𝑟𝑡𝜷̂𝑟𝑡 + 𝜀𝑖̂𝑟𝑡 

 

where 𝛼̂𝑟𝑘𝑡 is estimated price effect for the flat type (i.e. k = 1, 2 ,3, 4) in the region r in time period t. The 

estimates of parameters 𝛼̂𝑟𝑘𝑡  and 𝜷̂𝑟𝑡 in (1) are OLS estimates used in analysis of hedonic price index numbers. 

All elements of the above equation are known for observation i and for period t – log-prices, quantities of quality 

characteristics, parameters and even residuals! We continue our analysis in spirit of Suoperä & Vartia (2011) by 

averaging over all observation level equations using the basic lemma of aggregation (Vartia, 1979, 2008) to get 

macro model, which we break back into observation level. We call such a method as being a solution backward. 

So, we get more operational representation for (1), that is 

 

(2) log(𝑝𝑖𝑟𝑡) = 𝛼̂𝑡 + 𝒙′
𝑖𝑟𝑡𝜷̂𝑡 + (𝛼̂𝑟𝑘𝑡 − 𝛼̂𝑡) + 𝒙′

𝑖𝑟𝑡(𝜷̂𝑟𝑡 − 𝜷̂𝑡) + 𝜀𝑖̂𝑟𝑡 

 

The new representation of equation (5) decomposes the regression model into two parts: A representative data 

generating process for all transacted flats α̂t + 𝐱′
irt𝛃̂t and two terms describing observation specific behavior as 

deviation of the representative one (α̂rkt − α̂t) and 𝐱′
irt(𝛃̂rt − 𝛃̂t). ‘The equation (2) is a reparametrized version 

of (1) – only their arguments are decomposed differently. In the former the heterogeneity is distributed among all 

observation units and in the latter this is separated into its own terms. The price equation for transacted flats 

consists of two sets of variables: The first set includes the exogenous independent variables (1; 𝐱′
irt) and the 

other all the ‘covariates’ (α̂rkt − α̂t), 𝐱′
irt(𝛃̂rt − 𝛃̂t), which are the microelements of the covariance terms 

distributed element by element in the observation level. Dimensions for the both sets of variables are K+1, where 

K is the number of exogenous independent variables. Next, we free all the parameters of (2), including the 

unities of the heterogeneity terms, and form the second stage estimation equation; 

 

(3) log(pirt) = α̂t + 𝐱′
irt𝛃̂t + (α̂rkt − α̂t) ∙ γt + 𝐱′

irt(𝛃̂rt − 𝛃̂t) ∙ λt + ε̂irt 

 

or equally by vector and matrix notation 

 

(4) 𝐲t = 𝐗1t𝛃1t + 𝐗2t𝛃2t + 𝛆̂t 

 

The first column of matrix 𝐗1t is a vector of ones (i.e. constant) and the other columns are correspondingly 

micro explanatory variables (or quality characteristics) of the price model. The variables of the matrix 𝐗2t are 

the covariates  (α̂rkt − α̂t),  𝐱′
irt(𝛃̂rt − 𝛃̂t) . The two estimates of the (K+1) dimensional vectors of parameters 

are  𝛃1t = (α̂t; 𝛃̂t) and 𝛃2t = (γt; 𝛌t ) = (1; 𝟏) vector of ones. The i:th observation in the equation (4) is exactly 

the i:th observation in the equation (2). For example, the i:th element of the residual vector 𝛆̂t is exactly the OLS 

i:th residual estimated in the analysis stage (i.e. in (1)). So, the equation (4) is based purely on ‘bookkeeping’, 

because it is formed of known equations and their estimated parameters and is rewritten in the formulae (2,3 and 

4). In the equation the first term on the right, 𝐗1t𝛃1t, indicates the representative behavior of all observations, 

while the term 𝐗2t𝛃2t contains observation by observation the heterogeneous behavior differing from the 

representative agent’ (Suoperä & Vartia, 2011, p.14-15). 

 

The equation (3) or (4) is just a rewritten original regression model including 12 (r =1,…, 12) separately 

estimated regional price models (1). In addition to duplicating previous parameter estimates in (4) compared to 

single separate regional price model, we get standard errors for average macro parameters (𝛼̂𝑡; 𝜷̂𝑡) – that is at 

last a new result? It may come first as a surprise that this OLS-model (4) must exactly replicate all the previous 

average parameter values and give the unity coefficients for the covariates. The reason for this is purely 

algebraic in character. We have in the this OLS estimation (4 all the sufficient information to produce OLS-

solution not only for the combined regions, but also for all its separate ones. Because (4) is capable of producing 

the previous OLS-solution (1) with its overall minimum sum of squares, this actually is its OLS-solution. All 



 

 

other parameter estimates would give a larger sum of squares. The OLS-estimation (4) replicates in this way all 

the previous region wise regressions of the analysis stage: even the residuals are identical in them. 


