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1. Introduction

By considering bootstrap iteration as a Markov process, we propose an exact algorithm
for its implementation in the context of small-sample bias reduction. The algorithm caters for
any number of bootstrap iterations without the need for extensive Monte Carlo resampling ,
in the context of bootstrap bias reduction for small samples. The performance of high-level
bootstrap iteration is then investigated.

2. Exact computation of bias-corrected estimator based on j bootstrap iterations

Let X = fX1; : : : ;Xng be a random sample drawn from an unknown distribution F0, and
F1 be the empirical distribution of X . Let � = t(F0) be a functional of F0. Then a natural
estimator of � is �̂ = t(F1), provided t is de�ned on the space of all discrete distributions.
Hall (1992) gives a general formula for the bias-corrected estimator of � based on j bootstrap
iterations, namely

�̂j =

j+1X
i=1

�
j + 1

i

�
(�1)i+1Eft(Fi) j F1g;

for j = 1; 2; : : : , where Fi denotes the empirical distribution of a random sample of size n drawn
from Fi�1.

We see that bias reduction by j bootstrap iterations involves calculation of the conditional
expectations Eft(Fi)jF1g. Approximation to the latter is usually obtained by Monte Carlo
simulation of nested bootstrap resamples, which becomes impractical if j is large. Following the
notation of Fisher and Hall (1991), de�ne L(n) to be the set of all distinct n-tuples (l1; : : : ; ln)
such that the li's are nonnegative integers satisfying l1 � l2 � � � � � ln and

Pn

i=1 li = n. For
each l 2 L(n), de�ne M(l) to be the set of all distinct permutations of l. Note that each,
possibly iterated, bootstrap resample arising from X can be uniquely identi�ed with an n-
tuple (k1; : : : ; kn) in M(l) for a unique l 2 L(n), where ki gives the number of appearances of
Xi in the bootstrap resample. A jth level bootstrap resample relates stochastically to X by
the j-step transition probabilities, which are obtainable as components of the product matrix
P j

n = [p
(j)
n (s; t) : s; t 2 L(n)]. For each k = (k1; : : : ; kn) 2 K(n), de�ne F(k) to be the discrete

distribution that places a mass of ki=n on the observation Xi, i = 1; : : : ; n. Then we have

�̂j =

j+1X
i=1

�
j + 1

i

�
(�1)i+1

X
l2L(n)

p(i�1)n (1; l)jM(l)j�1
X

k2M(l)

t(F(k));



which follows from the general formula and is directly computable. The factor jM(l)j�1 reects
the equal weights shared by bootstrap resamples from the same set M(l). Our algorithm
computes �̂j direct from our equation.

3. Simulation studies

Simulation studies are conducted to examine the e�ectiveness of our algorithm in reducing
the bias of the Nadaraya-Watson estimate. Hall and Presnell (1999) apply their b-bootstrap
algorithm to reduce the bias of the Nadaraya-Watson estimator. Our example is taken from
their simulation study but focuses on a smaller sample size without �xed design points.

Let (X1; Y1); : : : ; (Xn; Yn) be independent data pairs such that Xi is uniformly distributed
over [0; 1] and Yi is normally distributed with mean m(Xi) and variance 1=2 conditional on Xi,
where m(x) = 5f1 � x + exp[�100(x � 1=2)2]g. Consider the Nadaraya-Watson estimator of
the mean curve m(x), de�ned as

m̂(x) =
nX

i=1

Kh(x�Xi)Yi=

nX

i=1

Kh(x�Xi);

where Kh(u) = h�1K(u=h), K(u) = (2�)�1=2 exp(�u2=2) and the bandwidth h is set to 0:04.
Denote by m̂j the bias-corrected version of m̂ based on j bootstrap iterations. The result is
based on 50 random samples and sample size n is 10 throughout the study. The curves for
j � 2 are visually indistinguishable. We see that bootstrap iteration is e�ective in reducing
the bias of m̂(x), especially for moderate values of x. Convergence of the process is reached
at approximately the second level and any further iterations do not improve the estimator
signi�cantly.
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