ON AIC’S CORRECTED FOR ESTIMATING KULLBACK-LEIBLER INFOMATION FOR LINEAR MODEL SELECTION

Rinya Takahashi, Kazuo Noda, Jinglong Wang, Masashi Itoh

1 Kobe Univ. of Mercantile Marine, Fukue-Minami, Higashi-Nada-ku, Kobe 658-0022, Japan
2 Faculty of Sci. and Tech., Meisei University, 2-1-1, Hodokubo, Hino-shi, Tokyo 191 8506, Japan
3 Dept. of Statist., East China Normal Univ., 3663 Zhongshan Rd. N., Shanghai 200062, China
4 Overseas Environmental Cooperation Center, 3-1-8, Shibakoen, Minato-ku, Tokyo, 105-0011, Japan

1. Introduction

We consider a linear model $M_0 : Y = (Y_1, Y_2, \ldots, Y_n)' \sim N_n(X\beta, \sigma^2 I_n)$, where X is an $n \times (k+1)$ design matrix having $1 = (1, 1, \ldots, 1)'$ as the first column with rank $(X) = k + 1$, I_n is the identity matrix of order n, and $(\beta', \sigma^2)'$ is the unknown parameter vector in a parameter space $\Theta_0 = \{ \theta = (\beta', \sigma^2)' \in \mathbb{R}^{k+1} \times (0, \infty), \beta' = (\beta_0, \beta_1, \ldots, \beta_k)' \}$. In the model M_0, we consider the problem of selecting the optimum one from the submodels M_i, $i = 1, 2, \ldots, 7$, specified by subsets Θ_i of Θ in the following way. As given constant vectors, we first write

$$P_0 = (\beta_0, 0, 0, \ldots, 0)' \quad \gamma_1 = (\beta_0, \beta_1, \ldots, \beta_k)' \quad \gamma_2 = (\beta_{1+}, \beta_{2+}, \ldots, \beta_k)'$$

Also, letting

$$C_1 = (I_{k+1}, O)_{(k+1) \times (k+1)}, \quad C_2 = (O, I_{k-s})_{(k-s) \times (k+1)}$$

and σ_0^2 be a given positive constant, we set restricted parameter spaces Θ_i, $i = 1, 2, \ldots, 7$, as

$$\Theta_1 = \{ \theta | \theta \in \mathbb{R}^{k+1} \times (0, \infty), C_1\beta = \gamma_1 \}, \quad \Theta_2 = \{ \theta | \theta \in \mathbb{R}^{k+1} \times (0, \infty), C_2\beta = \gamma_2 \},$$

$$\Theta_3 = \{ \theta | \beta = \beta_0, \sigma^2 \in (0, \infty) \}, \quad \Theta_4 = \{ \theta | \beta \in \mathbb{R}^{k+1}, \sigma^2 = \sigma_0^2 \},$$

$$\Theta_5 = \{ \theta | \beta \in \mathbb{R}^{k+1}, C_1\beta = \gamma_1, \sigma^2 = \sigma_0^2 \}, \quad \Theta_6 = \{ \theta | \beta \in \mathbb{R}^{k+1}, C_2\beta = \gamma_2, \sigma^2 = \sigma_0^2 \},$$

$$\Theta_7 = \{ \theta | \theta = (\beta_0', \sigma_0^2) \}.$$

Let $f_Y(y, \theta) = \prod_{i=1}^n f_{Y_i}(y_i, \theta)$ be the probability density of Y. Omitting the constant term, we express the Kullback-Leibler information in favor of the true value $\theta^+ = (\beta^{+'}, \sigma^{+2})' \in \Theta$ against $\theta_i \in \Theta_i$ as $l(\theta^+, \theta_i) = -2 \int_{\mathbb{R}^n} f_Y(y, \theta) \log f_Y(y, \theta_i) dy$.

We can consider each AIC$_i$ in M_i, the Akaike information criterion by Akaike (1973), as an estimator of $l(\theta^+, \theta_i)$. Setting a squared loss function of information criterion, IC$_i$,

$$L(\theta^+, IC_i) = |IC_i - E_{\theta^+} [l(\theta^+, \theta_i)]|^2,$$

we here find the risks of AIC$_i$ and the bias corrected AIC$_i$, AIC$_i^{bc}$, under the same situation as in Noda et al. (1996), where $\hat{\theta}_i$ denotes a maximum likelihood estimator (MLE) in Θ_i. We hence compare the risks of AIC$_i$ with those of AIC$_i^{bc}$, considering their variances and squared biases.

2. The risks of AIC$_i$ and AIC$_i^{bc}$

The risk function of IC$_i$ corresponding to the loss function L is expressed as

$$R(\theta^+, IC_i) = E_{\theta^+} [L(\theta^+, IC_i)] = Var_{\theta^+} (IC_i) + |B(\theta^+, IC_i)|^2,$$

where $B(\theta^+, IC_i)$ denotes the bias of IC$_i$.
In case of $i = 1, 2$, we adopt the following IC_i as AIC_i^{bc}, neglecting the term related to $\hat{\delta}_i$, an unbiased estimator of the noncentrality δ_i, in Noda et al. (1996) for the sake of respecting their variances:

$$\text{AIC}_1^{bc} = n \log(2\pi \hat{\sigma}_1^2) + \frac{n(n + s + 1)}{n - s - 3}, \quad \text{AIC}_2^{bc} = n \log(2\pi \hat{\sigma}_2^2) + \frac{n(n + k - s)}{n - k + s - 2}.$$

The risk of IC_1 is expressed through its variance and bias as follows.

$$\text{Var}_{\theta^+}(\text{IC}_1) = \text{Var}_{\theta^+}(\text{IC}_2^{bc}) = n^2 \text{Var}_{\theta^+}(\log \hat{\sigma}_1^2)$$

$$= n^2 \left\{ \sum_{j=0}^{\infty} \frac{(\delta_1/2)^j}{j!} e^{-\delta_1/2} \left[\psi\left(\frac{n - s - 1 + 2j}{2}\right) + \log 2 - \log(n - s - 1) \right]^2 \right\}$$

$$- 2 \left[\log \left(\frac{n}{(n - s - 1)\sigma^2} \right) \right] \left[\sum_{j=0}^{\infty} \frac{(\delta_1/2)^j}{j!} e^{-\delta_1/2} \left\{ \psi\left(\frac{n - s - 1 + 2j}{2}\right) + \log 2 - \log(n - s - 1) \right\} \right]$$

$$- \log \left(\frac{n}{(n - s - 1)\sigma^2} \right)^2$$

$$\left[\sum_{j=0}^{\infty} \frac{(\delta_1/2)^j}{j!} e^{-\delta_1/2} \left\{ \psi\left(\frac{n - s - 1 + 2j}{2}\right) + \log 2 - \log(n - s - 1) \right\} \right] - \log \left(\frac{n}{(n - s - 1)\sigma^2} \right)^2 \right\},$$

$$B(\theta^+; \text{IC}_1) = - \frac{2(s + 2)(s + 3)}{n - s - 3} + \frac{2n(s + 1)}{(n - s - 3)(n - s - 1)} \delta_1 + o\left(\frac{\delta_1}{n}\right),$$

$$B(\theta^+; \text{IC}_1^{bc}) = - \frac{2n(s + 1)}{(n - s - 3)(n - s - 1)} \delta_1 + o\left(\frac{\delta_1}{n}\right),$$

where ψ denotes the digamma function. As a result, in case of $i = 1$, the risk of AIC_1^{bc} is smaller than that of AIC_i, if the sample size n is sufficiently large.

The risks of IC_i in case of $i = 2, 3$ are similarly obtained and evaluated. In case of $i = 4, 5, 6$, the risks of IC_i depend on s and k so that their evaluations can not be decided without the constraints of the ranges of s and k. Roughly speaking, if s and k are sufficiently small to n, then each risk of AIC_i is smaller than that of AIC_i^{bc}. In case of $i = 7$, the risk of AIC_i is the same as that of AIC_i^{bc}. Hence the risk improvements of AIC_i, $i = 4, 5, 6$, should be considered as those different from AIC_i^{bc}.

REFERENCES

RÉSUMÉ

Des risques de AICs et AICs du biais corrigés qui estiment la information de Kullback-Leibler sur la sélection des modèles linéaires sont obtenus et mutuellement comparés sans la condition que la valeur vraie du paramètre est dans le modèle sélectionné. La fonction de risque est ici construite comme la attente de la fonction perte carrée de IC. Ces résultats obtenus sont illustrés par des études de certaines sortes de simulations (qui seront donnés dans la présentation).