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1 INTRODUCTION

In simplified terms, two alternative methods can be used in index calculations for controlling
change in quality. One is to analyse realised changes in the prices of qualitatively comparable
observations, or the so-called matched pairs method (Bailey, Muth and Nourse, 1963; Case and
Shiller, 1989; Quigley, 1995). The construction strategy of a hedonic index shows that in index
calculations the method becomes reduced into a classic classification index (see Chapter 4, p. 8).
The second method is not limited to the analysis of identical statistical units, but calculates price
changes from representative cross-sectional samples of the population. The method combines
relevant stratification, i.e. classification, of the studied topic on the one hand, and regression
analysis of heterogeneous cross-sectional data, on the other. The index application of the method is
based on the Oaxaca decomposition (Oaxaca, 1973), which breaks change in geometric mean prices
down into quality adjustment factors and price change standardised for quality.

In this study we deduce a similar decomposition of relative change in arithmetic mean prices for
semi-logarithmic price models. We develop two new aggregation solutions in which logarithmic
prices at the observation level are aggregated to stratum level, i.e. micro class level, so that the
(weighted or unweighted) arithmetic mean is received as the argument of logarithmic function. In
the analysis we exploit the logarithmic mean  (L. Törnqist, 1935, p. 35; L. Törnqist, P. Vartia and
Y. Vartia, 1985, p. 44).  The micro indices of the study are methodologically analogous with the
decomposition presented by Koev but instead of geometric means the Oaxaca decomposition of the
study in based on change in arithmetic means. The index application of the study is developed as a
logarithm of Laspeyres' index formula (Y. Vartia, p. 128, 1976). In the empirical part of the study
the analysis is applied to the statistics of KTI Property Information Ltd on the rents of office and
shop premises. The study is a continuation of the hedonic quality standardising methods that are
widely applied at Statistics Finland to index applications of dwelling prices.

The structure of the study is as follows: Chapter 2 describes the price models, stratification of the
data and estimation of the price models. Chapter 3 presents the aggregation of observation level
logarithmic prices to the micro classification level. It describes the inference of micro level price
aggregates and the qualitative characteristics that control them by means of the logarithmic mean. In
Chapter 4, the micro level indices are aggregated to less detailed classification levels so that the
consistency of the Oaxaca decomposition of the classification index is retained. Chapter 6 presents
the results of the study, followed by Chapter 7 containing conclusions.

2 ANALYSIS OF HETEROGENEOUS CROSS-SECTIONAL DATA

Stratification of observation data and statistical inferrence of price models form the theoretical basis
of the study. The analysis combines classification and typical regression analysis. Because the study
combines analysis of variance and typical regression analysis, the method is based on analysis of
covariance. A similar statistical deduction method has also been applied by e.g. Vartia, Y. &
Kurjenoja, J. (1992), Koev, E. (1996, 1997, 2003), Vartiainen, 2001, Koev, E. & Suoperä, A. (2002)
Kouvonen, S. & Suoperä, A. (2000, 2002), Suoperä, A. (2002, 2003), Korkeamäki, O., Kyyrä, T. &
Luukkonen, A. (2004).

2.1 Classification of observations

Let us examine the population of statistical units {{{{ }}}}n321 a,...,a,a,a A ====   and its stratification into
micro classes  Ak , where sub-index K1,...,k ====  represents the strata, or micro classes.
Subpopulations kA  of the statistical units are separate and exclude each other, so ====′′′′kk A A ∩  ∅ ,
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which unambiguously classifies all statistical units into strata, e.g. micro classes by region.
Combining of the indicator variables forms the design matrix of the variance analysis model.

2.2 Specification of the price model

We shall examine the determination of prices for one stratum. We shall investigate observation i of
stratum k in time period t. The logarithmic unit price ( )tikplog  of this observation is modelled as
follows:

(2.1) ( ) iktkttikkttik εβxαp +′+=log

where ktα  represents the price effectof stratum kA  in time period t. Parameters ktα  can be specified
so that kttkt µµα += , where tµ  represents average price effectand ktµ , respectively, the deviation of
the  kth stratum from the common mean tµ . It then holds true for the price effects ktµ  of the strata
that 0µw ktk kt =∑ , where ∑ =

k kt 1w  and represents the relative frequencies of the strata. Vector

tikx′  contains qualitative background variables at observation level, and parameter vector ktβ
reaction parameters of the respective qualitative background variables in time period t. Variable

 εikt of the model is a so-called random error term, with assumed expected value of zero and finite
variance. The price model is specified as linear relative to the parameters, thus belonging to the
�family� of flexible function forms. The specification of the price model is not only flexible relative
to its function form but also relative to its parameters - all its unknown parameters can vary in time
by stratum.

The unknown parameters are estimated in two stages. Parameter vectors ktβ  are estimated in the
first stage by centring the statistical data relative to stratum kA . With vector and matrix notation we
obtain OLS estimator (C. Hsiao, 1986, pp. 29-32)

(2.2) ( ) ( )kttktk
1

tktktkkt pMXXMXβ� log′′= − ,

where tkM  is an idempotent, symmetrical transformation matrix which transformas individual
observations as deviations from the corresponding stratum means. The price effects of the specific
stratum kA  are estimated in the second stage as follows:

(2.3) kttk
G
ktkt β�x-plog� ′=α )(

where  )log( G
ktp  represents the logarithm of the (unweighted) geometric mean price of stratum kA  ,

vector ktx ′  the (unweighted) arithmetic means of the quality variables and parameter vector ktβ�  the
OLS  estimates of the same stratum. For an example of a similar method for estimating vector
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coefficients for heterogeneously behaving cross-sectional data, see  Koev, E. & Suoperä, A. (2002),
Koev, E. (2003).

3 AGGREGATION OF OBSERVATION PRICES IN STRATA

The aggregation of all variables of model (2.1) is guided by the three following mathematical
characteristics: First, we demand that residuals for any individual stratum sum up to zero. Second,
the hypersurface of the regression model must always go through the means of input and output
variables. Third, the mean of the fitted values, i.e. predictions of the output variable, of the
regression model must match precisely the arithmetic mean of the dependent variable. These three
characteristics reveal that the dependent output variable is decomposed into two orthogonal
components of which the first is expressed as a linear combination of exogenous input variables and
the second as an error term (residual) which is orthogonal with the exogenous input variables of the
model. These conditions are trivially met when we choose the same weight for all observations.
Then the semi-logarithmic specification of model (2.1) leads to an unweighted geometric mean at
the stratum level in the aggregation of the output variable, and input variables, in turn, become
unweighted arithmetic means. This will naturally hold true if the β heterogeneity of model (2.1) is
excluded by assuming that (2.1) represents homogeneous behaviour (se diverse variations in e.g.
Oaxaca (1973), Mincer (1974), Willis (1986), Card (1999), Vartiainen (2001), Bayard, Hellerstein
and Troske (2003), Korkeamäki and Kyyrä (2002), Korkeamäki and Kyyrä (2003),  Korkeamäki,
Kyyrä and Luukkonen, (2004)). The method is based on the typical aggregation of �unit prices� in
which all observations have the same weight and therefore contribute equally to stratum averages
irrespective of their real quantitative categories. In the index application of the method, relative
change of geometric means is measured at the stratum level, as best example of which see Koev
(2003).

In this study we develop two new aggregation solutions for the observations of model specification
(2.1), the first one of which leads to a logarithmic unweighted and the second to a logarithmic
weighted arithmetic mean at the stratum level. Annex 5 proves that both in the case of strata and
their arbitrary union they satisfy the above three basic Gaussian criteria. The new aggregation rules
are deduced by means of the logarithmic mean (L. Törnqvist, 1935, p. 35; Y. Vartia, 1976; L.
Törnqvist, P. Vartia and Y. Vartia, 1985, p. 44).

We will first examine what with out current knowledge can be said about differences between the
geometric and arithmetic means. By means of Taylor series we obtain as the difference between the
geometric and arithmetic means at the stratum level  (L. Törnqvist, 1936; Y. Vartia and P. Vartia,
1984)

 (3.1) 2
2
1

i
log loglog1 kt

PC
kt

G
ktikt s)p()p()(pn −≈=∑ ,

where ( )G
ktplog  is a logarithmic transformation of the (unweighted) geometric mean and ( )PC

ktplog
respectively a logarithmic transformation of the (unweighted) arithmetic mean for stratum kA . Term

2
kts  is the variance of the logarithmic variable in stratum kA  in time period t, so ( ) ( )PC

kt
G
kt pp loglog ≤

always holds true. The second-order Taylor approximation is accurate only if the logarithmic
variable is normally distributed (see Van Dalen and Bode, 2004, p.2-3). This is mainly
contemplation of theory, so nothing can be said for certain about the difference in the relative
change between the arithmetic and geometric means, that is, remainder )log(-)log( PC

kt
G
kt pp ∇∇  can

be positive, negative or zero between the differences of the statistics.  In practice, because the
second-order Taylor approximation is �adequately� accurate for regularly behaving variables, it
follows from the stability of variances 2

kts , t = 0,1,� that 0)log(-)log( ≈∇∇ PC
kt

G
kt pp . In small strata

the variances can be varied significantly and the above approximation is not valid.
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When we exclude the normality of a variable (that is, log(Y)), all we know about differences
between the geometric and arithmetic means is approximation. The situation cannot be changed by
endless development of Taylor expansions - we will still lack exact empirical measures about the
difference between arithmetic and geometric means. We will now go on to rectify this shortcoming.
In our study we develop for logarithmic observations two new aggregation rules with which
differences between the arithmetic and geometric means can be exactly modelled mathematically.
The method can also be applied precisely to the ratios of these statistics and to their remainder. The
analysis exploits the expression of logarithmic mean in the aggregation of logarithmic observations,
that is, e.g. the left side of equation (2.1). As a result we receive logarithmic stratum aggregates in
which the arguments for the logarithmic function are arithmetic - as opposed to the conventional
geometric - means. In fact, we develope accurate mathematical sollution to the problen of
�estimation biases in quality-adjusted hedonic price indices� (more spesificly see Annex 5)
represented nicely in  J. van Dalen and B. Bode (2004). In this solution the order of workings are
important - first we estimate log-transformed multiplicative hedonic regressions and after that we
agregate known micro level behaviour in to, say, k=1,�,K strata levels.

Logarithmic mean is determined for two positive figures x and y as follows (L. Törnqvist, 1935, p.
35; Y. Vartia, 1976; L. Törnqvist, P. Vartia and Y. Vartia, 1985, p. 44).

(3.2) ( ) ( ) ( )y/xy-xx,yL log= ,  if x ≠ y
    = x, if x = y

The definition can also be expresses as ( ) ( ) ( )x,yLy-xy/x =log , when it connotes that the log change
from x to y is a relative change compared to the logarithmic mean. This indicator of relative change
is a ratio that is symmetrical, additive and independent of measurement unit. Let us examine
positive figures { }nktkt yy ,,1 �  { }nktkt xx ,,1 �  in stratum kA  in time period t and determine their
logarithmic mean as follows

(3.3) ( ) ( )∑∑
∑∑∑∑

−
=

i iktikt

i ikti ikt
i iktikt xy

xy
xyL

i
i log

 ,  ,

or congruently

( ) ( )∑ ∑∑∑∑ −=
i

i iktikt

iktikt
i iktikt xyL

xyxy
 , 

log
i

i
,

whereby we receive (see definition of logarithmic mean)

(3.4)  ( )∑∑ i iktikt xy
i

log = ( ) )log( 
 , 
),(

i
iktikti

i iktikt

iktikt xy
xyL

xyL∑ ∑∑
,

The operational characteristics of expression (3.4) are so far difficult to observe. We will concretise
the expression with price aggregation by examining the two arbitrarily divided variables x and y.
We will first determine: iktiktiktikt pqvy ==  and iktikt qx = , where iktv  connotes the value of
observation i in stratum kA  in time period t and iktq , respectively, its quantities. By locating the
variables in equation (3.4) we obtain

(3.5a) ( ) ( ) )log( 
 , 
),()log(  log

i
i ikti

i iktiktikt

iktiktiktAw
kti iktiktikt p

qpqL
qpqLpqpq ∑ ∑∑∑∑ ==
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where argument Aw
ktp  of the logarithmic function connotes the weighted arithmetic mean price in

stratum kA  in time period t. The second price aggregation principle is developed by selecting
1== iktikt qx  and iktiktiktiktikt pppqy =⋅== 1  when equation (3.4) can be expressed as

(3.5b) ( ) ( ) ( ) ( ) )log( 
, 
)1,(logloglog

i
ikti

ktikt

iktA
ktkt

A
ktkti ikti ikt p

npL
pLpnpnqp ∑ ∑∑∑ ==⋅=

where nkt  is the number of observations and A
ktp  the unweighted arithmetic mean price, i.e. the

mean of unit prices (that is, iktp ) in stratum kA  in time period t.  In the mean of unit prices, the
weight of each price at the observation level is 1/nkt (see left side of equation (3.5b)), whereas in the
mean A

ktp  of equation (3.5a) the quantities at the observation level contribute to the weighted
arithmetic mean price, as they also should do. The difference between the arithmetic and geometric
means obtained with term (3.5a) is

 (3.6) ( ) )log( )log()log( 1
kt ikti

Aw
ikt

G
kt

Aw
kt pnwpp ∑ −−≡− ,

where weights  Aw
iktw have been defined with equation (3.5a)  (or alternatively with (3.5b)),

)log( Aw
ktp  is calculated with (3.5a) (or alternatively with (3.5b)) and )log( )log( 1

ikti kt
G
kt pnp ∑ −= . In

deviation from the Taylor series expansion, the above difference between the geometric and
arithmetic means is identically valid for all positive figures iktq  and iktp . In fact, the clause holds
true for the arbitrarily divided p and q variables for which a logarithmic transformation has been
defined. In addition, if 1=∑i

Aw
iktw , then the difference between the arithmetic and geometric means

is ( ) ))log(,cov()log( 1
kt

Aw
ktktikti kt

Aw
ikt pwnpnw ≡−∑ − 1. The difference between weighted arithmetic and

geometric means is calculated with (3.6) by replacing 1−
ktn  with volume weights ∑i iktikt qq .

The obtained difference between the arithmetic (here weighted arithmetic) and geometric means is:
≡∇∇ )log(-)log( Aw

kt
G
kt pp ( ){ })log( 1

kt ikti
Aw
ikt pnw∑ −−∇ . See Annex 5. Differences in the micro indices

depend on the samples of each given point in time - the differences can grow, remain unchanged or
diminish over time.

Table 3.1 examines the accuracy of second-order Taylor approximation in the estimation of
difference between unweighted arithmetic and geometric means with data of the KT Institute on
rents of office and shop premises. The data are from the time period 1995/2 - 2005/1 and their
stratification in respect of office and shop premises has been described in Annexes 1 and 2.  The
real difference between the arithmetic and geometric means is calculated for each stratum at each
point in time with equation (3.6), (weights  iktw have been defined in equations (3.5b)) and second
order Taylor approximation, respectively, with formula (3.1).  The table presents deviation of the
Taylor approximation relative to the real difference (3.6). The distribution of errors is described at
5, 25, 75 and 95 percentage points of the distribution, and with the mean and the median.

                                                          
1  cov(x, y) = E (x� E(x)) (y� E(y))  = E (x� E(x)) y = E (y� E(y)) x  (Y. Vartia, 1979).
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Table 3.1: Relative errors in second order Taylor approximation of difference between the
arithmetic and geometric means (eq. (3.6)) at 5, 25, 75, 95 percentage points, means and medians
for rents of office and shop premises for time period 1995/2-1995/1 (log %)

Strata
05.0p 25.0p Mean Median

75.0p 95.0p
Shops 1,302 -16.46 -7.92 -3.30 -3.33 1.46 9.59
Offices 1,174 -6.78 -0.80 3.17 3.05 7.39 13.30

Second order Taylor approximation calculates the difference between the arithmetic and geometric
means with a systematic bias - in rents of shop premises it underestimates and in the case of office
premises it overestimates the real difference between the means. The usability of the method is
weakened by the fact that at the stratum level the approximation errors can be randomly of different
signs at different points in time.

In modern microeconomic theory, demand and cost functions belong to the same function family as
specification (2.1). Above-described �price aggregation� problems do not arise in micro-
aggregation-macro analyses of economic theory. Price aggregation is trivially precise because in an
optimal economy unit prices of individual commodities or production inputs do not vary over micro
agents. Thus, )log()log( G

kt
Aw
kt pp ≡  always applies trivially (see e.g. Muellbauer, 1975, 1976;

Christensen, Jorgenson & Lau, 1971; Sargan, 1971;  Deaton & Muelbauer, 1980; Diewert, 1982).
Because the number of commodities and production inputs is extremely large, their stratification
and aggregation to the stratum level are often necessary in an empirical analysis. For instance, in
modern demand theory the situation could be describes as follows: Let us examine commodity
stratum kA  - e.g. group �food� in the SNA commodity classification. The unit prices (of e.g.
different kinds of fruit) vary within the group. Then the aggregation of logarithmic unit prices to the
group level - if performed with observation weights other than those defined in equation (3.5a) or
(3.5b) - inevitably leads to the geometric mean price. By replacing the geometric mean price with
the arithmetic mean price, in the same way as Deaon and Muellbauer (1980, p. 318), the
aggregation of unit prices generates an approximation error of precisely the same magnitude as
equation (3.6), the impacts of which on estimation results are not known.

This Chapter examined price aggregation as a separate research problem. Annex 5 presents the
mathematics of aggregation clause (3.5a) (or analogically (3.5b)) by applying it to individual
stratum kA  in the case of estimated model specification (2.1).

4 MICRO INDICES, STANDARDISATION FOR QUALITY AND INDEX
DECOMPOSITION

This Chapter examines the analysis of heterogeneous cross-sectional data in index calculation. The
statistical deduction of price models (2.1) is performed in basic text book manner and the actual
interest focuses on the aggregation of estimated models, their differentiation and decomposition. In
the aggregation of output and input variables by weights derived in equation (3.5a) (or (3.5b)) leads
to re-parametrization of the model at the stratum level (See Annex 5). After this, the �elementary
aggregate� models of the strata are differentiated and decomposed with the Oaxaca decomposition.
In the decomposition, the change in mean prices is divided on the one hand into quality adjustments
for qualitative variables controlled in the index calculation and into price change adjusted for
quality. At the stratum level the method is analogous with Koev�s (2003) analysis but is performed
in the study with logarithmic arithmetic means. The actual index calculation is performed to the
components of the decomposition as logarithmic presentation of Laspeyres� index formula (Y.
Vartia, 1976, p. 128).
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4.1 Division of the classification index into its elements

The analysis of the Chapter follows the mathematics of Annex 5, in which the estimation of price
models and it�s aggregation from the observation level are kept separate. For instance, equation
(2.1), aggregated with equation (3.5a) weights from observation level to stratum level receives
expression ( ) kt

Aw
kt

Aw
kt

Aw
kt βxαp ��log ′+=  (see Annex 5, eq. (8)) in which the difference at the base and

comparison points of time (τ, t) is determined for stratum kA  as follows

τττ
τ

αα k
Aw

k
Aw
kkt

Aw
kt

Aw
ktAw

k

Aw
kt βxβx

p
p ����log ′−−′+=









The variables and parameters of the model are presented in Annex 5. Aggregation clause (3.5a)
developed in Chapter 3 is applied to the input and output variables of the price model in the
aggregation of observations. In the aggregation of observations semi-logarithmic models are re-
parametrisized so that the arithmetic mean is received as the argument of the logarithmic function.
As the unfortunate mathematics of Annex 5 show, the �average models� of the strata are precise
because they do not contain approximative residual terms. The stratum level equation presents the
log change of arithmetic means between the base and comparison periods. By defining for the
equation first an Oaxaca decomposition (1973) and then an exponent change, micro index for
stratum k can be expressed as

(4.1) ( ){ } ( ){ }ττττ
τ

αα kkt
Aw
kt

Aw
k

Aw
ktk

Aw
k

Aw
ktAw

k

Aw
kt ββx  βxx 

p
p ��'��exp� ''exp −+−−=

which is a well-known method in, for example, dwelling price indices and studies concerning pay
discrimination (Oaxaca, 1973; Vartiainen, 2001; Koev, 2003; O. Korkeamäki, T. Kyyrä, & A.
Luukkonen, 2004). However, decomposition (4.1) deviates from studies on pay discrimination in
two respects: 1) As in Koev�s (2003) index application, decomposition (4.1) is developed for
heterogeneously behaving cross-sectional data and 2) Decomposition (4.1) is based on arithmetic,
and not on geometric, means like other decompositions.

In simplified terms, the price index of micro class kA  is explained by two factors: The first term,

( ){ } βxx k
Aw
k

Aw
kt ττ

� ''exp − , reveals which part of the change in arithmetic mean prices is explained by
changes in qualitative factors between the base and comparison periods. The second term, presented
as ( ){ }τταα kkt

Aw
kt

Aw
k

Aw
kt ββx ����exp −′+−  = ( ) ( ){ }τταα k

Aw
kt

Aw
kkt

Aw
kt

Aw
kt βxβx ����exp ′+−′+  = ( ){ }Aw

k
Aw
kt pp τ

~logexp ,
in turn, expresses change in prices standardised for quality (for analogy see Koev, 2003, p. 23)
when qualitative factors equal the situation at the comparison period. A simple brain exercise is in
place here: Let us assume that qualitative properties are alike Aw

kt
Aw
k xx '' ≡τ , whereby

( ){ }  βxx k
Aw
k

Aw
kt 1)0exp(� ''exp ==− ττ  (i.e. no change in quality). When we substitute Aw

kt
Aw
k xx '' ≡τ  with

the index standardised for quality, we obtain
( ){ }τταα kkt

Aw
kt

Aw
k

Aw
kt ββx ����exp −′+− = ( ) ( ){ }ττταα k

Aw
k

Aw
kkt

Aw
kt

Aw
kt βxβx ����exp ′+−′+  = Aw

k
Aw
kt pp τ . In other words, if

no change in quality is present, decomposition (4.1) of the index reduces it to a classic classification
index (see repeat-sales and hybrid models;  Bailey, Muth and Nourse, 1963; Case and Shiller, 1989;
Quigley, 1995).

The model for �commodities� due for repeat sales assumes that Aw
kt

Aw
k xx '' ≡τ  and the index calculation

becomes reduced to a classic classification method. However, if the age of the commodity that is
due for repeat sales can be equated to its �physical depreciation� and it has a significant price
impact, ( ){ }  βxx k

Aw
k

Aw
kt 1)0exp(� ''exp ==− ττ does not follow even if we assume that Aw

kt
Aw
k xx '' ≡τ  and
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ktk ββ �� =τ . In other words, if Aw
kt

Aw
k xx '' ≡τ  does not hold true, change in arithmetic mean prices is

partly explained by qualitative changes in characteristics and the remainder of the price change
represents price change when quality is standardised. Analytically this means that the change in
prices is analysed by decomposing decomposition (4.1).

4.2 Aggregation from stratum level to total data level

The index application of decomposition (4.1) is developed for Laspeyres� index formula - Paasche�s
index formula can be deduced analogously with Laspeyres� analysis. Fisher, in turn, is obtained as
the geometric mean of Laspeyres� and Paasche�s. The mathematics of Paasches� and Fisher�s
formulae are left to the reader.

It is generally known that Laspeyres�s price index can be written in logarithmic form (Y. Vartia,
1976, p. 128), which as far as is known has never been applied to index solutions in practice. As a
point of departure for an index application this sounds suspicious - the choice of a new perspective
is perplexing. The logarithm of Laspeyres� index formula is defined as

(4.2) 










∑
∑

k
Aw
kk

k
Aw
ktk

pq
pq

ττ

τlog 







=∑ Aw

k

Aw
kt

k k p
pw

τ
τ log , where ( )

( )∑∑
=

k
Aw
kkk

Aw
ktk

Aw
kk

Aw
ktk

k pq,pqL
p,qpqL w

τττ

τττ
τ .

Variable τkq  measures the quantity of stratum kA  at base period τ and variables Aw
kt

Aw
k pp ,τ  arithmetic

mean prices in the respective stratum at points in time  (τ, t).

If we substitute logarithmic (arithmetic) mean prices in equation (4.2) with equation (4.1) and
proceed as per Annex 5, we receive (Annex 5 eq. (14))

(4.3) ( ) ( )




 −+





 −′+′−′=








=








∑ AwAw

t
AwAw

t
Aw

t
AwAwAw

tAw

Aw
t

Aw
k

Aw
kt

k
L
k ββxβxx

p
p

p
pw ττττ

ττ

αα �����loglog0

which holds true identically if we select as weights L
kw τ 

( )
( )∑∑

=
k

Aw
kkk

Aw
ktk

Aw
kk

Aw
ktkL

k pq,pqL
p,qp qLw

τττ

τττ
τ 

Finally, by locating equation (4.3) to the right of equation (4.2) and taking an exponential
transformation of it on both sides, we receive (see Annex 5, equation (15))

(4.4) ( ){ }




 





 ′+−





 ′+′−′=

∑
∑ AwAw

t
AwAw

t
Aw

t
Aw

t
AwAwAw

t
k

Aw
kk

k
Aw
ktk βxβxβxx

pq
pq

ττττ
ττ

τ αα ����exp� exp

where the left side of the equation is a typical Laspeyres classification index. The first right-hand
term contains quality standardisations of the quality factors controlled in the index calculation. The
second term, in turn, represents Laspeyres price index standardised for quality.

From the perspective of a statistical expert, the mathematics of Chapters 2, 3 and 4, and Annex 5,
which lead to price index (4.4) are at best a macabre joke - they contain statistical science, latest
price aggregation principles, re-parameterization of price models, appliance of the basic aggregation
clause to the aggregation of heterogeneous price models (Vartia, 1979) and eventually deviant
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mathematics on index figures. They simply do not seem to relate in any way to statistics in practice.
The conclusion is natural because as far as we know the classic classification index (here
Laspeyres�) has never before been presented in a parametric form at the level of whole economy.
Nevertheless, for instance the Consumer Price Index can be derived from equation (4.4) as follows:
The commodities in the Consumer Price Index are of equal quality (i.e. '' τkkt xx ≡ ), whereby quality
adjustment factors disappear in individual strata and compound strata. Therefore, basing on the
analyses of Chapter 3 and Annex 5, (4.4) becomes reduced to Laspeyres� price index (4.2) (in other
words, its exp transformation). The analysis corresponds precisely with the so-called matched pairs
method (See e.g. Bailey, Muth and Nourse, 1963; Case and Shiller, 1989; Quigley, 1995; Koev,
2003).
Annex 5 presents the analogy of (4.4) for quarterly statistics on dwelling prices (Koev, 2003) where
the log-Laspeyres receives the following parametric expression (See Annex 5 eq. (11) and (12))
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At the level of the whole country, the quarterly statistics on dwelling prices correspond precisely
with log-Laspeyres price index (4.5) in parametric form.

As price indices (4.4) and (4.5) show, the core finding of the study can be generalised as follows:
Index calculations performed with heterogeneous statistical data, inclusive of hedonic price indices,
become reduced to calculations of parameters and means of input and output variables. This study,
too, ends up in calculating means - yet, not haphazardly - but by controlling it with coherent and
mathematically consistent analysing methods.
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5 EMPIRICAL EXAMPLE WITH RENTS OF OFFICE AND SHOP PREMISES

The study is limited to the rents of office and shop premises only. The data on both office and shop
premises are divided into new and old tenancy agreements. An inquiry about rents covers all
tenancy agreements once a year. In addition, a separate inquiry in February/March covers new
tenancy agreements. Indices complying with the theoretic analysis are constructed for both new and
old tenancy agreements in the study. The mathematics of the study are programmed into an index
application with the SAS, SAS/STAT, SAS/IML and SAS/AF software packages. The performer of
the study is responsible for the implementation of the programming while Seppo Suomalainen
designs and implements the user interface. The tables of the results and the statistics on mean prices
generated in the index calculation are automatically converted in the application into Excel files of
directly publishable format.

5.1 Definition of the statistical data

The creation of the statistical data in the SAS application is automated from the ACCES database
into SAS files. The validation of the statistical data is controlled in the SAS application inside the
data at the reading stage as far as possible. The study uses the definitions applied by KTI:  Regional
rent levels are controlled within the limits of Tables 5.1a and b. In addition, the size of a rented
office premises must be at least nine square metres. No limits are set for the floor area of shop
premises.

Table 5.1a: Limits for rents levels of office premises by area (same as those of KTI).

Municipality Lower limit of rents (EUR/m2) Upper limit of rents (EUR/m2)
Helsinki 4 30
Espoo, Vantaa and Kauniainen 4 22
Tampere and Turku 3.5 17
Jyväskylä, Kuopio, Lahti, Oulu 3 15
Other municipalities 3 13

Table 5.1b: Limits for rents levels of shop premises by area (same as those of KTI).

Municipality Lower limit of rents (EUR/m2) Upper limit of rents (EUR/m2)
Helsinki 5 120
Espoo, Vantaa and Kauniainen 4 80
Tampere and Turku 4 70
Jyväskylä, Kuopio, Lahti, Oulu 4 65
Other municipalities 3 50

5.2 Stratifications of the statistical data

Because there are large regional differences in the levels of rents, the data are divided into five
estimation categories by area. This estimation classification is consistent for both new and old
tenancy agreements. Because the locations of office and shop premises vary considerably, internal
variation of rent levels within the estimation categories is controlled with an additional
classification based on municipal sub-areas (so-called village level classification). The partitioning
of the estimation categories into smaller sub-areas will hereafter be referred to as micro
classification. The micro classifications of office and shop premises are not congruent.
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Table 5.2: Numbers of strata of office and shop premises by estimation areas (same stratification is
applied to both new and old agreements -  data on new agreements missing from rent levels and
qualitative characteristics are substituted with mean for the micro class)

Estimation areas Micro classes of
office premises

Micro classes of
shop premises

Helsinki 15 15
Espoo, Vantaa and Kauniainen 12 10
Tampere and Turku 10 6
Jyväskylä, Kuopio, Lahti, Oulu 8 8
Other municipalities 11 23
Micro classes, total 56 62

More precise division of estimation areas into strata is shown in Annexes 1 and 2.

5.3 Price model estimation results

The study analyses the rents per square metre of office and shop premises for new and old tenancy
agreements. All tenancy agreements are analysed annually in five estimation categories in
accordance with Table 5.2. Each estimation category divides into smaller sub-areas, such as
municipality and its sub-areas, so the number of independently estimated parameters easily grows
large over time. Their detailed presentation is simply not purposeful. The co-efficient estimates of
rent equations, their t values (dispersions), coefficients of determination (R2) and prediction errors
are presented in the study by aggregating the estimation results of the equations from equation level
to aggregate level. The method is described in the margin (footnote) of the next page.

Table 5.3 presents the means and key figures for the coefficient estimates of rent equations for
office premises for the 2002-2004 time period. Other estimation results are presented in Annex 3.
At the observation level, standard errors in the price models for office premises amount to
approximately 20-30 log per cent, so the standard errors in the mean (standard errors/ tN ) amount
to around 0.3-0.4 log per cent. The estimation results of office premises deviate from other dwelling
price statistics (see Koev, E. & Suoperä, A, 2002, Koev, E., 2003) in respect of the impact of the
floor area of the target of rental on price - unlike in other statistics on the prices of real
estate/dwellings the size of the floor area of the rental target does not seem to have a significant
impact on rent levels at all points in time. By contrast, age is a very central explanatory variable in
equations for rents of office premises.

Table 5.4 contains the main estimation results for shop premises for the 2002-2004 time period.
Estimation results for other points in time are presented in Annex 4. The results principally differ
from those for office premises as follows: Standard errors at observation level are larger than for
office premises at approximately 50 log per cent.  Standard errors of the mean, in turn, are of the
magnitude of around 0.5 log per cent. The coefficients of determination of the model are lower than
for office premises, although as a rule the explanatory variables of the model are even more
significant than in the rent equation for office premises, on the average.
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Table 5.3: Estimation results for office premises2 in 2002/1-2004/2 (standard errors in brackets)
Key figures/Point in time     2002/1     2002/2     2003/1     2003/2     2004/1     2004/2

N     8877     7094     7832     7113     7880     6547
Micro classes      110      112      112      110      110      112
Adj. R2 0.624317 0.633493 0.636713 0.635698 0.635692  0.64335
RMSE 0.272951 0.268587 0.267779 0.267813 0.267419 0.258001
Constant 2.590432 2.487331 2.515395 2.623503 2.611727 2.725481

(0.017933) (0.023453) ( 0.02245) (0.025972) (0.023983) (0.027302)
Floor area -0.00001 -0.00002 -0.00002 -0.00003 -0.00003 -0.00002

(4.793E-6) ( 3.94E-6) (3.858E-6) (5.452E-6) (5.117E-6) (4.806E-6)
Floor area1/2 0.001913 0.003858 0.003603 0.004457 0.004003 0.003177

(0.000442) (0.000424) (0.000406) (0.000486) ( 0.00046) (0.000451)
Age at basic renovation 0.007799 0.003077 0.003984 0.010987 0.007827 0.008695

(0.001644) (0.001994) (0.001924) (0.002153) (0.002017) (0.002274)
Age at basic renovation1/2  -0.1231 -0.07704 -0.08492 -0.13193 -0.11207 -0.13431

(0.010307) (0.013166) (0.012712) (0.014544) ( 0.01353) (0.015531)
He(α)        1        1        1        1        1        1

(0.010444) (0.011478) (0.010844) (0.010406) (0.010119) ( 0.01115)
He(xβ)        1        1        1        1        1        1

(0.032926) (0.023127) (0.022711) (0.017877) (0.020005) (0.019891)
∑He(xβ)/ N (log-%) 0.010752 0.018431 0.018395 0.013979 0.012149 0.015519

Table 5.4: Estimation results for commercial premises in 2002/1-2004/2 (standard errors in
brackets)
Key figures/Point in time     2002/1     2002/2     2003/1     2003/2     2004/1     2004/2

N     9864     7678     8260     7190     7863     6863
Micro classes      119      122      122      119      124      120
Adj. R2 0.445272 0.443523 0.448503 0.444661 0.445233 0.462205
RMSE 0.515011 0.498803 0.497131 0.502478 0.505206  0.50583
Constant 3.240823 3.590222 3.601913 3.568135 3.554372 3.488971

(0.053446) (0.053708) (0.051843) (0.055716) (0.053343) (0.069356)
Floor area 0.000153 0.000159 0.000164 0.000184 0.000196 0.000191

(0.000013) (0.000013) (0.000013) (0.000015) (0.000015) (0.000013)
Floor area1/2 -0.01618 -0.01827 -0.01865 -0.01959 -0.02064  -0.0224

(0.001029) (0.001085) (0.001056) (0.001166) (0.001134) (0.001095)
Age at basic renovation  0.01487 0.034699 0.033875 0.018736 0.015044 -0.00772

(0.004318) (0.004534) ( 0.00444) (0.004691) (0.004509) (0.005678)
Age at basic renovation1/2 -0.19901  -0.3419 -0.34011 -0.25687 -0.23554   -0.101

(0.029789) (0.030403) (0.029611) (0.031472) (0.030229) (0.039235)
He(α)        1        1        1        1        1        1

(0.011576) (0.013891) (0.013393) (0.013697) (0.013057) (0.014435)
He(xβ)        1        1        1        1        1        1

(0.037185) (0.020331) (0.018234) (0.019361) ( 0.02214) (0.019361)
∑He(xβ)/ N (log-%) 0.001557 0.001501 0.001736 0.003325 0.003885 0.008363

                                                          
2      Covariation variables (He(α) and He(xβ)) can be calculated with formula )ββ(x ) αα(c tktikttktikt

���� −′+−= where �population

parameters�  tt β,α
��  are weighted averages of strata level OLS estimates (that is, weights are relative frequencies of the micro

classification). Thus the model used in parameter estimation in Tables 5.3 and 5.4 can congruently be expressed as

iktikttikttikt εcβxα)(p �1��log ++′+= .  This is rewriting of the original heterogeneous models as a �one equation model� which
reproduces precisely the original fits, residuals and mean parameter estimates. This manner of presentation is synthesis of
heterogeneous models performed for macro analysis, which decomposes the original models into a common element and
heterogeneity effects (covariations).  Basing on the OLS definition, we can prove even the following stronger result: If we
calculate covariation variables from the first stage and in the second stage estimate model ikttikttikttikt εγcβxα)(p ++′+=log

with OLS, we receive precisely the aforementioned model, including e.g. its estimates, i.e. ),β,α(),γ,βest(α ttttt 1��= . This is
because the information allows optimum OLS solutions by equation. As an important additional result we obtain standard
errors of all mean parameters and accuracies of estimates as their inverse figures. The exactitudes of the mean parameters are
naturally multifold compared to the exactitudes of the parameters of respective heterogeneous sector models.
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The mathematics of the �covariation variable� shown in the last row of the tables is explained in the
margin of the page. This variable collates the systematic statistical information originating from the
heterogeneous behaviour of the stratification. The estimation results prove that it is necessary to
take into account the heterogeneity of the micro classes in the modelling of the determination of rent
levels.

Figure 5.1 presents the average �age-effect� on the rent levels of office and shop premises. Age has
a stronger impact on the rent levels of shop premises than on those of office premises. The rent
levels of both office and shop premises are generally lower for older than for newer real estate.
Because the index calculation requires from an �index commodity� qualitative comparability
between the base and comparison periods, growth of the average age of real estate over time
requires upwards correction of the index and vice versa (See Koev, 2003).

Figure 5.1: Average price impact of age at basic renovation on rents of office and shop premises in
log per cent in the 1995-2004 period

Figure 5.2: Average price impact of floor area of target of rental on rents of office and shop
premises in log per cent in the 1995-2004 period
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Figure 5.2 shows the impact of the size of the target of rental on the rents per square meter of office
and shop premises. With office premises the average price impact is somewhat ascending, which
depicts stronger concentration of demand on larger than average rental targets. Systematic growth of
floor area of office premises over time means that the index must be corrected downwards, unlike in
other statistics on dwelling prices (Koev, 2002). With shop premises the growth of floor area
initially lowers the rent level but in the case of rental targets whose floor area exceeds 2,000 square
metres the growth of the floor area has a positive impact on the rent level. As in the case of age at
basic renovation, growth of the average floor area of shop premises over time means that the index
must be corrected upwards in the descending part of the profile, and vice versa in its ascending part.

The profiles for the price impacts of age and size in Figures 5.1 and 5.2 have been estimated for the
entire examined time period and they represent the price impacts of age at basic renovation and
floor area relative to an average rental target. These profiles may deviate significantly by region
from the situation shown here.

5.4 Index calculation with rents of office premises

Micro indices for new and old agreements at the stratum level are obtained direct by differentiating
the estimated stratum level price models. Price changes are aggregated together with Laspeyres�
logarithmic clause. The study develops an indicator to describe how the prices of new and old
agreements change relative to the whole stock. Index series are calculated with both unweighted and
weighted arithmetic means for the strata in Annexes 1 and 2. Altogether over 2,000 stratum level
micro indices are calculated in the empirical analysis. Chained Laspeyres� indices are developed for
each index series to describe price development over time. The presentation of all index series is
unnecessary in this context, so this Chapter focuses on the change of rents per square meter in one
micro index area and in the whole country during the 1995/1-2005/1 time period.

The results correspond precisely with the decompositions of either equation (4.1.) or (4.4): Quality
changes in the variables controlled in the index calculation, change in rents per square metre
standardised for quality and the classic Laspeyres� classification index are each estimated in the
ways described in detail in Chapter 4. The combined impact of quality adjustments is obtained as a
product of individual quality adjustment factors. The following holds true for the decomposition:
The product of separately estimated quality adjustment factors and change in prices standardised for
quality corresponds with change in arithmetic mean prices. The situation is described by Tables 5.5a
and 5.5b, which show the index point estimates and chain indices for the rents of office premises in
Kluuvi, Helsinki, during the 1005/2-2005/1 time period.
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Table 5.5a: Changes in rents per square metre of office premises in Kluuvi calculated with old
agreements for the 1995/2-2005/2 time period (aggregation of observations (3.5b) p. 6))

Adjustments for qualityPoint in time Number of
agreements

Arithmetic
mean price

Aw
tp

Laspeyres�
index

Qality adjusted
Laspeyres�s

index
Floor area Age at basic

renovation

1995/2 257 15,71104 100 100 1 1
1996/1 329 15,89585 101,1763 100,3642 0,99529 1,012862
1996/2 328 14,93857 93,97783 94,82938 1,012053 0,979218
1997/1 392 14.5896 97.66393 97.70707 0.998245 1.001316
1997/2 359 15.42585 105.7318 107.1175 0.988768 0.998277
1998/1 418 15.46423 100.2488 100.4845 0.997801 0.999853
1998/2 402 16.40113 106.0585 106.0947 1.002872 0.996796
1999/1 448 16.53867 100.8386 100.8958 0.998349 1.001086
1999/2 388 17.48472 105.7202 105.5853 1.000257 1.001021
2000/1 457 18.63326 106.5688 105.4831 1.012587 0.997733
2000/2 423 19.752 106.004 107.5703 0.983297 1.002179
2001/1 490 20.00034 101.2573 101.5537 0.998238 0.998841
2001/2 444 21.06741 105.3352 102.9046 0.99943 1.024203
2002/1 482 21.35766 101.3777 101.3517 1.001108 0.99915
2002/2 399 22.26379 104.2427 104.4967 1.00672 0.99091
2003/1 436 22.30416 100.1813 100.4754 0.997827 0.999245
2003/2 369 23.2988 104.4594 102.2486 1.009835 1.011673
2004/1 428 22.99362 98.69012 98.39744 0.998593 1.004388
2004/2 365 23.31567 101.4006 101.8301 1.000815 0.994971
2005/1 401 23.22632 99.61678 99.7373 0.998357 1.000435

Table 5.5b: Chain index 1995/2=100 of rents per square metre of office premises in Kluuvi
calculated with old agreements for the 1995/2-2005/2 time period (aggregation of observations
(3.5a) p. 6))

Adjustments for qualityPoint in time Number of
agreements

Arithmetic
mean price

Aw
tp

Laspeyres�
index

Qality adjusted
Laspeyres�s

index
Floor area Age at basic

renovation

1995/2 257 15.71104 100 100 1 1
1996/1 329 15.89585 101.1763 100.3642 0.99529 1.012862
1996/2 328 14.93857 95.08326 95.17475 1.007286 0.991812
1997/1 392 14.5896 92.86204 92.99246 1.005518 0.993117
1997/2 359 15.42585 98.18472 99.61117 0.994224 0.991406
1998/1 418 15.46423 98.42903 100.0938 0.992038 0.99126
1998/2 402 16.40113 104.3923 106.1942 0.994888 0.988083
1999/1 448 16.53867 105.2678 107.1456 0.993245 0.989156
1999/2 388 17.48472 111.2894 113.1299 0.9935 0.990167
2000/1 457 18.63326 118.5997 119.333 1.006006 0.987922
2000/2 423 19.752 125.7205 128.3669 0.989202 0.990075
2001/1 490 20.00034 127.3011 130.3613 0.98746 0.988927
2001/2 444 21.06741 134.093 134.1478 0.986897 1.012862
2002/1 482 21.35766 135.9404 135.961 0.987991 1.012001
2002/2 399 22.26379 141.7079 142.0748 0.994631 1.002802
2003/1 436 22.30416 141.9649 142.7502 0.992469 1.002045
2003/2 369 23.2988 148.2957 145.96 1.00223 1.013741
2004/1 428 22.99362 146.3532 143.6209 1.00082 1.01819
2004/2 365 23.31567 148.4031 146.2493 1.001636 1.013069
2005/1 401 23.22632 147.8344 145.8651 0.99999 1.01351
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The differences between the classic classification index and the index standardised for quality are
minor. When chained, the quality adjustment for floor area is close to 1.35 per cent. Because the
floor areas of the rental targets grow and some of the price increase is explained by the growth in
the floor area, the requirement for equal quality means that the classification index must be
corrected downwards by the same 1.35 per cent (For justification see Figure 5.2).

Table 5.6a: Development of (unweighted) mean rents of office premises per square metre, quality
adjustment factors and change in mean prices standardised for quality 1995/2=100 in whole Finland
(aggregation of observations (3.5b) p. 6))

Adjustments for qualityPoint in time Laspeyres�
index

Qality adjusted
Laspeyres�s

index
Floor area Age at basic

renovation
1995/2 100 100 1 1
1996/1 99.21216 99.32787 0.998087 1.00075
1996/2 97.74959 98.92159 0.998859 0.989281
1997/1 97.49622 98.63903 0.998841 0.989561
1997/2 96.11946 97.77027 0.99769 0.985391
1998/1 96.39198 98.10098 0.997507 0.985035
1998/2 98.42627 100.4031 0.998867 0.981423
1999/1 99.86575 101.8856 0.998439 0.981708
1999/2 105.3214 107.4701 0.998874 0.981112
2000/1 106.7714 108.8327 0.99911 0.981934
2000/2 112.0688 114.7404 0.998852 0.977839
2001/1 114.5953 117.3275 0.999128 0.977566
2001/2 121.0327 123.8603 1.000274 0.976904
2002/1 122.4616 124.9895 1.000733 0.979057
2002/2 126.3071 129.3299 1.002821 0.97388
2003/1 126.7574 129.6671 1.002198 0.975416
2003/2 130.3482 133.7447 1.002474 0.972199
2004/1 130.5492 133.9151 1.00166 0.973249
2004/2 132.4315 136.3435 1.001474 0.969879
2005/1 132.3287 136.4151 1.000981 0.969093
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Table 5.6b: Development of (weighted) mean rents of office premises per square metre, quality
adjustment factors and change in mean prices standardised for quality 1995/2=100 in whole Finland
(aggregation of observations (3.5a) p. 6))

Adjustments for quality Point in time Laspeyres�
index

Qality adjusted
Laspeyres�s

index
Floor area Age at basic

renovation
1995/2 100 100 1 1
1996/1 98.82051 99.128 0.997185 0.999713
1996/2 95.97759 97.11563 0.999528 0.988749
1997/1 95.15724 96.50556 0.997475 0.988525
1997/2 94.11951 96.08957 0.991907 0.987489
1998/1 94.21439 96.47679 0.989572 0.986841
1998/2 97.0128 99.74011 0.993825 0.978699
1999/1 97.67792 100.5674 0.9918 0.979298
1999/2 100.7931 103.9779 0.987694 0.981449
2000/1 102.457 105.4244 0.987417 0.984237
2000/2 108.5364 112.6151 0.978752 0.984705
2001/1 110.0883 114.2859 0.978138 0.9848
2001/2 117.7175 121.9085 0.979682 0.985648
2002/1 118.9247 123.0409 0.979808 0.986466
2002/2 125.9205 130.0981 0.98217 0.98546
2003/1 126.508 130.9965 0.977141 0.988328
2003/2 129.9037 133.3921 0.990495 0.983194
2004/1 129.9836 133.232 0.990403 0.985071
2004/2 132.4422 136.5734 0.989155 0.980383
2005/1 132.6564 136.3087 0.989496 0.983537

Tables 5.6.a and 5.6.b show the development of rents per square metre for office premises since
1995 by aggregation principles 3.5a and 3.5b.  The aggregation method (i.e. eq. (3.5a) and (3.5b))
has no significance in the case of whole Finland - Laspeyres� classification indices are of almost the
same magnitude irrespective of the method in the case of whole Finland (cf. columns 1 of Tables
5.6a and 5.6b). By contrast, the quality adjustments for age at basic renovation and floor area differ
from each other according to the used aggregation method. In the method of aggregation of unit
prices the need for quality adjustment for age at basic renovation amounts to approximately 3.1 per
cent whereas in the case of weighted aggregation the respective need is half of this.  Because the
average age of the targets of rental is higher the index must be corrected upwards (See Figure 5.1).
The unweighted aggregation method does not recommend any kind of quality adjustment for floor
area. By contrast, in the weighted case the mean floor area weighted by observation falls
systematically by approximately 20 to 25 per cent from 1995/2 to 2005/1. As Figure 5.2 shows, in
the case of office premises growth in the floor area of the rental target raises the rent per square
metre, so systematic fall in the mean floor area from the base time period to the present requires
upwards correction of the index.

5.5 Index calculation with rents of shop premises

Figures 5.1 and 5.2 show that growth in age at basic renovation lowers the rent level in the case of
shop premises. Systematic growth in the age at basic renovation requires upwards correction of the
index.

Large changes in floor area are in practice born at three measurement points - in old agreements in
Vantaa and Pori at 1998/2, in old agreements in Porvoo at 1999/2, in new agreements in central
Tampere at 1999/2 and in old agreements in Helsinki�s Ruoholahti at 2004/2. Large floor area
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changes reflect changes in the compilation of the data rather than actual changes of floor area. Large
quality adjustments for floor area that are due to the compilation of the statistics are eliminated so
that the index component concerned behaves more moderately and quality adjustment for floor area
becomes insignificant in both aggregation methods over the 1995/2-2005/1 time period.

Table 5.7a: Development of (unweighted) mean rents of shop premises per square metre, quality
adjustment factors and change in mean prices standardised for quality 1995/2=100 in whole Finland
(aggregation of observations (3.5b) p. 6))

Adjustments for qualityPoint in time Laspeyres�
index

Qality adjusted
Laspeyres�s

index
Floor area Age at basic

renovation
1995/2 100 100 1 1
1996/1 99.50339 99.22401 1.002574 1.000241
1996/2 99.27926 99.75496 1.000795 0.99444
1997/1 98.88131 99.29038 1.001126 0.99476
1997/2 97.26445 98.12825 1.003551 0.98769
1998/1 97.02747 97.82475 1.004745 0.987166
1998/2 100.7283 102.4353 1.004141 0.97928
1999/1 100.2897 101.7986 1.005137 0.980142
1999/2 107.6702 110.2125 1.000926 0.976029
2000/1 108.5155 110.928 1.001425 0.976859
2000/2 108.1548 112.0193 0.99959 0.965898
2001/1 108.4946 111.8489 1.000362 0.969659
2001/2 114.2379 118.6534 0.998541 0.964193
2002/1 114.0913 118.3745 0.999792 0.964017
2002/2 118.9102 125.0264 0.996296 0.954616
2003/1 118.2212 124.213 0.996955 0.954669
2003/2 121.667 128.9282 0.99761 0.945941
2004/1 122.0147 129.0681 0.999469 0.945854
2004/2 124.2804 132.9663 0.99487 0.939496
2005/1 124.0024 132.5159 0.995554 0.939934

Quality adjustments for age at basic renovation are minor between successive points in time but
cumulate from 1995/2 to 2005/1 to approximately 6 per cent in the unweighted method and to
around 4.7 per cent in the weighted method. Because lower rents are paid for targets that are older at
the time of basic renovation than for newer targets (See Figure 5.1), the index must be corrected
upwards.
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 Table 5.7b: Development of (weighted) mean rents of shop premises per square metre, quality
adjustment factors and change in mean prices standardised for quality 1995/2=100 in whole Finland
(aggregation of observations (3.5a) p. 6))

Adjustments for qualityPoint in time Laspeyres�
index

Qality adjusted
Laspeyres�s

index
Floor area Age at basic

renovation
1995/2 100 100 1 1
1996/1 99.0163 98.97105 1.000296 1.000161
1996/2 97.49307 97.98 0.999901 0.995129
1997/1 97.484 97.8992 1.00051 0.995251
1997/2 95.21988 96.58443 0.997685 0.98816
1998/1 94.74101 95.80639 0.998968 0.989901
1998/2 100.2305 102.3352 0.998994 0.98042
1999/1 99.95503 101.9382 0.999897 0.980646
1999/2 107.1107 108.9993 1.007505 0.975352
2000/1 106.6805 108.4594 1.00721 0.976558
2000/2 108.8736 111.3836 1.004563 0.973025
2001/1 109.1016 111.6815 1.00284 0.974133
2001/2 114.9847 118.2359 0.997126 0.975306
2002/1 114.9059 117.9852 0.99777 0.976078
2002/2 117.3236 121.1303 1.000757 0.967841
2003/1 117.019 120.7806 1.003149 0.965815
2003/2 121.6128 126.6202 1.002383 0.95817
2004/1 121.4494 126.1721 1.005144 0.957643
2004/2 123.6885 128.8335 1.008562 0.951915
2005/1 123.9989 129.3614 1.005777 0.95304

5.6 Office premises - indices for new agreements

According to the wishes of KTI, the index of new agreements compares new agreements in the base
year to new agreements in the comparison point in time. New agreements are also analysed with
both the unweighted and the weighted aggregation method. Because the volumes of data by micro
area are small, especially the variable of floor area shows strong fluctuation. Small numbers of
observations in the strata also create strong variation in rent levels, and compiling of separate
statistics by stratum does not seem sensible. Their analysing should therefore be viewed as a kind of
economic trend indicator. The only difference between the unweighted and the weighted
aggregation method is quality adjustment for floor area which is almost insignificant in the case of
the unweighted method but especially significant in the case of the weighted aggregation method.
The index components are also almost identical in the two methods.
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Table 5.8a: Development of (unweighted) mean rents of office premises per square metre, quality
adjustment factors and change in mean prices standardised for quality from 1995/2=100
(aggregation of observations (3.5b) p. 6)). New agreements.

Adjustments for qualityPoint in time Laspeyres�
index

Qality adjusted
Laspeyres�s

index
Floor area Age at basic

renovation
1995/2 100 100 1 1
1996/1 100.5709 103.3729 1.001027 0.971896
1996/2 99.92888 101.7436 1.010822 0.971649
1997/1 101.3 102.9983 1.012366 0.971498
1997/2 102.323 104.5546 1.011894 0.967153
1998/1 105.0596 107.5731 1.014037 0.963115
1998/2 109.2535 111.0907 1.015245 0.968695
1999/1 119.1459 122.1053 1.013637 0.962636
1999/2 124.0084 125.714 1.021123 0.966027
2000/1 127.4844 129.7435 1.020941 0.962434
2000/2 133.7433 136.618 1.020651 0.959151
2001/1 138.7454 142.5455 1.02478 0.949805
2001/2 141.7797 144.7065 1.024612 0.956239
2002/1 141.749 144.2652 1.029918 0.954016
2002/2 139.3799 141.3422 1.024607 0.962434
2003/1 135.9739 138.0708 1.025272 0.960538
2003/2 135.464 137.6123 1.020186 0.964911
2004/1 139.4788 140.7046 1.020199 0.971661
2004/2 138.0409 138.8705 1.016787 0.977615
2005/1 137.9844 140.729 1.018105 0.96306

Table 5.8b: Development of (weighted) mean rents of office premises per square metre, quality
adjustment factors and change in mean prices standardised for quality from 1995/2=100
(aggregation of observations (3.5a) p. 6)). New agreements.

Adjustments for qualityPoint in time Laspeyres�
index

Qality adjusted
Laspeyres�s

index
Floor area Age at basic

renovation
1995/2 100 100 1 1
1996/1 99.00129 100.4758 1.007138 0.978342
1996/2 104.1035 105.6744 1.005774 0.979479
1997/1 106.2454 106.4791 1.004879 0.992961
1997/2 102.328 104.9193 0.994285 0.980907
1998/1 104.7362 108.1368 0.993012 0.975369
1998/2 116.0304 118.8391 0.991554 0.984682
1999/1 120.8599 124.082 0.990734 0.983142
1999/2 120.8378 121.9465 1.011765 0.979385
2000/1 124.9377 127.3356 0.999208 0.981947
2000/2 133.6702 135.1137 0.99488 0.994408
2001/1 135.5084 137.9004 0.996615 0.985991
2001/2 144.2739 145.2572 0.989683 1.003585
2002/1 140.6419 144.0849 0.990335 0.985631
2002/2 136.9807 142.5933 0.969978 0.990372
2003/1 139.1733 146.3057 0.971976 0.978677
2003/2 133.1996 142.9218 0.949924 0.981105
2004/1 139.0316 149.4283 0.950285 0.9791
2004/2 140.37 154.5971 0.928466 0.977928
2005/1 141.447 155.1761 0.943096 0.966524
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5.7 Shop premises - indices for new agreements

The volumes of data on new agreements concerning shop premises are small by stratum and
especially in respect of floor area highly heterogeneous. In the small strata of shop premises rents
per square metre and their range typically vary even more strongly than in the case of office
premises. The floor areas of the targets of rental fluctuate strongly, and in consequence also the
respective quality adjustment factors over time. At the level of the whole country new rental targets
of shop premises have larger floor areas than in 1995, but their size fluctuates strongly by stratum.
The age at basic renovation behaves more systematically - it grows from 1995 in the same way as in
the analyses of other indices, so to retain the comparability of age at basic renovation the
classification index must be corrected upwards. The central difference between the unweighted and
weighted aggregations is in their Laspeyres� classification indices. The new agreements contain
only few really large rental targets, which put even more emphasis on the significance of weighting.
This explains the large differences between the Laspeyres� classification indices - aggregation of
unit prices to stratum level produces random results compared to the weighted aggregation at the
observation level.

At the level of the whole country, the mean floor areas of the strata remain relatively stable in the
aggregation at the observation level and no major need to make adjustments for quality arises. By
contrast, because the new agreements contain rental targets with very large floor areas in small
strata, mean floor areas and ages at basic renovation vary strongly between the base and comparison
periods in the weighted aggregation at the observation level. The following can be generalised about
indices for new agreements: Non-stable price changes in new tenancy agreements for both office
and shop premises principally arise from large structural changes in the small strata in age at basic
renovation, floor area and rent per square metre. The situation is especially problematic in
Helsinki�s Itäkeskus.

Table 5.9a: Development of (unweighted) mean rents of shop premises per square metre, quality
adjustment factors and change in mean prices standardised for quality from 1995/2=100
(aggregation of observations (3.5b) p. 6)). New agreements.

Adjustments for qualityPoint in time Laspeyres�
index

Qality adjusted
Laspeyres�s

index
Floor area Age at basic

renovation
1995/2 100 100 1 1
1996/1 106.9027 107.1388 1.002168 0.995637
1996/2 105.8499 108.6596 0.989752 0.98423
1997/1 107.3659 110.5942 0.983269 0.987329
1997/2 102.7713 105.9554 0.995987 0.973856
1998/1 107.8471 113.553 0.99278 0.956658
1998/2 114.8316 120.7564 0.99985 0.951079
1999/1 109.2124 115.6868 0.987877 0.95562
1999/2 124.8598 132.6495 0.990832 0.949985
2000/1 114.4661 121.5609 0.982164 0.958737
2000/2 111.4787 119.2062 0.9948 0.940064
2001/1 110.7087 118.7978 0.987606 0.943603
2001/2 112.6051 120.6158 0.987421 0.945478
2002/1 111.8421 120.8652 0.993392 0.931501
2002/2 105.3507 113.5894 0.998671 0.928704
2003/1 96.04156 104.5199 0.994036 0.924396
2003/2 101.6072 108.5527 1.006617 0.929864
2004/1 102.7707 111.4258 1.003584 0.91903
2004/2 94.75266 104.4357 0.99136 0.91519
2005/1 90.68876 100.4924 0.991592 0.910096
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Table 5.9b: Development of (weighted) mean rents of shop premises per square metre, quality
adjustment factors and change in mean prices standardised for quality from 1995/2=100
(aggregation of observations (3.5a) p. 6)). New agreements.

Adjustments for qualityPoint in time Laspeyres�
index

Qality adjusted
Laspeyres�s

index
Floor area Age at basic

renovation
1995/2 100 100 1 1
1996/1 102.3566 104.9494 0.988532 0.986609
1996/2 112.4552 115.1025 0.991633 0.985244
1997/1 122.8639 126.1627 0.988951 0.984733
1997/2 133.6802 137.7609 0.984311 0.985845
1998/1 124.8171 130.1068 0.979518 0.979404
1998/2 136.0767 138.5484 1.0051 0.977177
1999/1 124.7138 126.6485 1.0066 0.978267
1999/2 125.5761 126.0001 1.024178 0.973106
2000/1 116.7782 117.1027 1.017662 0.979922
2000/2 132.7105 133.241 1.030595 0.96645
2001/1 140.2231 140.7669 1.026282 0.970627
2001/2 145.9424 147.0226 1.018606 0.97452
2002/1 145.4299 148.7881 1.008515 0.969177
2002/2 155.421 160.5544 1.015349 0.953393
2003/1 154.9096 161.9211 1.024028 0.93425
2003/2 161.4271 167.5569 1.023784 0.941035
2004/1 166.1748 174.6923 1.034229 0.91976
2004/2 172.9625 178.4424 1.053962 0.919663
2005/1 172.4231 179.2244 1.045164 0.920479

7 CONCLUSIONS

The study examines semi-logarithmic model specifications in heterogeneously behaving cross-
sectional strata. The examination combines classification and regression analysis. The models are
specified as parallel in relation to the parameters and the specifications allow non-linearities of
exogenous output variables. The standard price aggregation solution of the semi-logarithmic models
for stratum level (i.e. elementary aggregate) is the geometric mean. Logarithmic unit prices are
summed up by observation with weights of equal size in this method.  The method has been applied
widely in evaluations of pay differentials between women and men (Oaxaca (1973), Mincer (1974),
Willis (1986), Card (1999), Vartiainen (2001), Bayard, Hellerstein and Troske (2003), Korkeamäki
and Kyyrä (2002), Korkeamäki and Kyyrä (2003),  Korkeamäki, Kyyrä and Luukkonen, (2004).
Koev (2003) generalised the research method to index calculation by allowing non-linearities of
price models and α  and β heterogeneity over cross-sectional strata and time. Koev�s log-Laspeyres�
price index and its Oaxaca decomposition are shown in Annex 5 as parametric at the level of the
whole country.

In Chapter 3, two new aggregation clauses based on the logarithmic mean (L. Törnqvist, 1935; Y.
Vartia, 1976) are developed in which the aggregation of logarithmic means inside strata leads to
either an unweighted or weighted logarithm of the arithmetic mean. Differences between the
arithmetic and geometric means are derived accurately with the aggregation clauses in a case of an
arbitrarily divided variable so that the commonly known second-order Taylor approximation can be
precisely substituted with them. In Chapter 4 and Annex 5 these aggregation clauses are applied to
heterogeneously behaving price, whose observations are aggregated into �average� price models at
stratum level.  Oaxaca decompositions are defined for the stratum level models in the typical
manner, but instead of geometric mean prices they are developed with either weighted or
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unweighted arithmetic mean prices. The mathematical analysis is presented in Annex 5 for a linear
model specification in heterogeneously behaving cross-sectional data. The indices are unusually
presented in a parametric form at all aggregation levels.

Change in rents per square metre is calculated with Laspeyres� index formula at all aggregation
levels. Index calculation from the micro class level to index categories at less detailed levels is
performed with Laspeyres� logarithmic form (Y. Vartia, 1976, p. 128). Basing on Laspeyres�
properties the method is consistent in aggregation.
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Annex 1: Stratification of tenancy agreements of offices premises into new and old agreements

Estimation areas Municipality Strata
Kluuvi
Kaartinkaupunki
Kamppi
Sörnäinen
Siltasaari
Ruoholahti
Vallila
Lauttasaari
Pitäjänmäki industrial area
KruuPunaEiraUllaKatajaKaivo
Etu- and Taka-Töölö
Itä-, Länsi- and Pohjois-Pasila
Ylä- and Ala-Malmi
Herttoniemi industrial area and harbour

Estimation area 1 Helsinki

Rest of Helsinki
Otaniemi
Tapiola
Pohjois-Tapiola
Leppävaara
Kilo and Mankkaa
Olari and Niittykumpu

Espoo

Rest of Espoo
Kauniainen Kauniainen

Tikkurila and Viertola
Tammisto, Pakkala, Veromies and Airport
Myyrmäki and Martinlaakso

Estimation area 2

Vantaa

Rest of Vantaa
City centre
Hervanta and Kauppi
Tammela and Tulli
Hatanpää and Lapinniemi

Tampere

Rest of Tampere
City centre
Kupittaa
District 1
Districts 8 and 9

Estimation area 3

Turku

Rest of Turku
City centreJyväskylä
Rest of Jyväskylä
City centreKuopio
Rest of Kuopio
City centreLahti
Rest of Lahti
City centre

Estimation area 4

Oulu
Rest of Oulu

Hämeenlinna Hämeenlinna

Joensuu Joensuu
Järvenpää Järvenpää
Kerava Kerava
Kouvola Kouvola
Lappeenranta Lappeenranta
Mikkeli Mikkeli
Pori Pori
Rovaniemi Rovaniemi
Vaasa Vaasa

Estimation area 5

Other municipalities Other municipalities
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Annex 2: Stratification of tenancy agreements of shop premises into new and old agreements

Estimation areas Municipality Strata
Kluuvi
Kamppi and Kaartinkaupunki
Kruununhaka, Punavuori, Eira, Ullanlinna, Katajanokka and Kaivopuisto
Sörnäinen
Itä-, Länsi- and Pohjois-Pasila
Vallila
Lauttasaari
Linjat, Torpparinmäki, Alppila, Vallila and Hermanni
Siltasaari and Ruoholahti
Etu- and Taka-Töölö
Meilahti and Ruskeasuo
Vanhakaupunki and Herttoniemi industrial area
Ylä- and Ala-Malmi
Itäkeskus

Estimation area 1 Helsinki

Rest of Helsinki
Tapiola
Olari,Mankkaa and Nöykkiö
Espoonlahti
Espoo centre
Leppävaara and Matinkylä

Espoo

Rest of Espoo
Kauniainen Kauniainen

Myyrmäki, Tammisto and Pakkala
Tikkurila and Viertola

Estimation area 2

Vantaa

Rest of Vantaa
City centreTampere
Rest of Tampere
City centre
Itäkeskus (Varissuo)
Teräsrautela

Estimation area 3

Turku

Rest of Turku
City centreJyväskylä
Rest of Jyväskylä
City centreKuopio
Rest of Kuopio
City centreLahti
Rest of Lahti
City centre

Estimation area 4

Oulu
Rest of Oulu
City centreHämeenlinna
Rest of Hämeenlinna
City centreJoensuu
Rest of Joensuu

Järvenpää Järvenpää
Kajaani Kajaani
Kerava Kerava
Kokkola Kokkola
Kouvola Kouvola
Lappeenranta Lappeenranta
Mikkeli Mikkeli

City centrePori
Rest of Pori

Porvoo Porvoo
Raahe Raahe
Raisio Raisio
Rovaniemi Rovaniemi
Salo Salo
Savonlinna Savonlinna
Seinäjoki Seinäjoki
Vaasa Vaasa
Valkeakoski Valkeakoski

Estimation area 5

Other municipalities Other municipalities



Annex 3: Estimation results for office premises in 1995/1-2001/2 (standard errors in brackets)
Brief description of estimation method in footnote of page seven.

Key figures/Point in
time

1995/2 1996/1 1996/2 1997/1 1997/2 1998/1 1998/2     1999/1     1999/2     2000/1     2000/2     2001/1     2001/2

N     5354     5929     5999     6559     6942     7870     6838     7769     7770     8631     7562     8402     8065
Micro classes      109       98       97       99      109      108      108       98      111       99      110       98      110
Adj. R2 0.426895 0.429819 0.421151 0.433939 0.470006 0.490966 0.522405 0.556201 0.571745 0.586475 0.607716 0.611371  0.61833
RMSE 0.309407 0.309175 0.308247 0.305671  0.29564 0.291719 0.283044 0.277785 0.267788 0.266979 0.275445 0.277968 0.274554
Constant 2.306092 2.328858 2.326821 2.389309  2.29619 2.342251 2.364772    2.392 2.566317 2.542243 2.428492 2.524138  2.54716

(0.030655) (0.029107) (0.037119) (0.033214) (0.031621) (0.027005) (0.028509) (0.028722) (0.022136) (0.021116) (0.028239) (0.026771) (0.019046)
Floor area -0.00002 -0.00001 -3.25E-6 5.532E-6 0.000024 0.000022 0.000025 0.000027 8.053E-6 4.777E-6 6.086E-8 1.019E-6 -0.00001

(6.059E-6) (5.922E-6) (5.388E-6) (5.181E-6) (6.269E-6) (5.949E-6) (5.735E-6) (5.308E-6) (5.056E-6) (4.589E-6) ( 5.56E-6) (5.306E-6) (4.921E-6)
Floor area1/2 0.004478 0.004259 0.003135   0.0023 0.000572 0.000737 0.000394 -0.00002  0.00043 0.000641 0.001394 0.001017 0.001986

(0.000609) (0.000586) (0.000562) (0.000536) (0.000579) (0.000545) (0.000552) ( 0.00051) ( 0.00048) (0.000446) (0.000497) (0.000475) (0.000464)
Age at basic renovation 0.015118 0.014682 0.014681 0.017864 0.014171  0.01601 0.010804 0.009441  0.01931 0.016534 0.004245 0.008835 0.006277

(0.002902) (0.002768) (0.003251) (0.002869) (0.002656) (0.002322) (0.002344) (0.002358) (0.001936) (0.001865) (0.002414) (0.002303) (0.001738)
Age at basic renovation1/2 -0.14786 -0.15199 -0.14831   -0.173 -0.13342 -0.15173 -0.13194 -0.12372 -0.20119 -0.17824 -0.08548 -0.12185 -0.10761

(0.018912) (0.017982) (0.021989) (0.019388) (0.018031) (0.015422) (0.015846) (0.016055) (0.012498) (0.012025) (0.016198) (0.015359) (0.010929)
He(α)        1        1        1        1        1        1        1        1        1        1        1        1        1

(0.018287) (0.018391) (0.015976) (0.014664) ( 0.01425) (0.013805) (0.014089) (0.012708) (0.012332) (0.010632) (0.009763) (   0.009) (0.011081)
He(xβ)        1        1        1        1        1        1        1        1        1        1        1        1        1

(0.053312) (0.037901) (0.021919) (0.023197) (0.027037) (0.022648) (0.025923) (0.034912) (0.015389) (0.016376) (0.019267) (0.028158) (0.032453)
∑He(xβ)/ N (log-%) 0.002246 0.003758 0.001047 0.001247  -0.0024 -0.00281 0.002184 0.002444 0.000816 0.002296 0.006326 0.006139 0.009251



Annex 4: Estimation results for shop premises in 1995/1-2001/2 (standard errors in brackets)
Brief description of estimation method in footnote of page seven.

Key figures/Point in
time

1995/2 1996/1 1996/2 1997/1 1997/2 1998/1 1998/2     1999/1     1999/2     2000/1     2000/2     2001/1     2001/2

N     6936     7279     7359     7757     7680     8563     7908     8721     8536     9201     9268     9911     9139
Micro classes      121       98      100       98      121      124      123      100      123      100      123      100      124
Adj. R2 0.400145 0.395269 0.405003 0.408051 0.416228 0.422911 0.420592 0.417787 0.429261 0.433588 0.424156  0.42564 0.434972
RMSE 0.498521 0.501553 0.496856 0.498953 0.498573 0.495411 0.502085 0.503984 0.504268 0.509142 0.514653 0.514961 0.516865
Constant 3.154563 3.136424 3.254549 3.365586 3.308814 3.423605 3.403994 3.465816 3.634543 3.573166 2.978676 2.998781 3.225125

(0.046436) (0.045756) (0.065202) (0.063402) (0.077013) (0.073114) (0.072206) (0.064035) (0.061529) ( 0.06084) (0.060141) (0.057432) (0.062073)
Floor area 0.000175 0.000176 0.000178 0.000183 0.000211 0.000216 0.000223 0.000229 0.000197 0.000191 0.000158  0.00016 0.000163

(0.000015) (0.000015) (0.000015) (0.000014) (0.000016) (0.000015) (0.000018) (0.000018) (0.000014) (0.000013) (0.000014) (0.000013) (0.000014)
Floor area1/2 -0.01726 -0.01746 -0.01836  -0.0188 -0.01991 -0.01998 -0.02108 -0.02108  -0.0185 -0.01881 -0.01542 -0.01574 -0.01649

(0.001179) (0.001162) (0.001143) (0.001112) (0.001184) (0.001111) (0.001245) (0.001197) ( 0.00109) (0.001058) (0.001074) (0.001044) ( 0.00108)
Age at basic renovation 0.032452 0.029547 0.037033 0.043911 0.044126 0.049965 0.048058 0.044537 0.058764 0.050186 0.008373 0.007152 0.014824

(0.004198) (0.004134) (0.005437) (0.005253) (0.006088) (0.005942) (0.005475) (0.004952) (0.004708) (0.004703) (0.004736) (0.004525) (0.004795)
Age at basic renovation1/2 -0.28115 -0.26346 -0.32332 -0.37792 -0.37743  -0.4313 -0.40775 -0.40589 -0.48656 -0.43004 -0.12803 -0.12413 -0.19743

(0.027649) (0.027276) (0.037813) (0.036634) (0.043516) (0.041734) (0.039694) (0.035451) ( 0.03367) (0.033405) (0.033134) (0.031583) (0.033954)
He(α)        1        1        1        1        1        1        1        1        1        1        1        1        1

(0.016308) (0.016213) ( 0.01496) (0.014299) (0.014244) (0.013361) (0.013831) (0.013432) (0.013264) (0.013022) (0.014852) (0.013887) (0.012652)
He(xβ)        1        1        1        1        1        1        1        1        1        1        1        1        1

(0.019099) (0.019035) (0.020535) (0.019452) (0.015467) (0.014714) (0.016045) (0.014831) (0.016764) (0.019455) (0.029383) (0.033513) (0.033195)
∑He(xβ)/ N (log-%) 0.008667 0.008697 0.008969 0.009733 0.016505 0.013105 0.006568 0.005877 0.001203  0.00121 0.003643 0.000957 0.001679



Annex 5: Price aggregation and index calculation of semi-logarithmic models for heterogeneously
behaving cross-sectional data estimated with the OLS method.

Let us examine equation (2.1) estimated with the OLS method

(1) ( ) iktktiktktikt eβxαp +′+= ��log ,

where sub-index i refers to an obsevation, k to stratum kA , and t to a point in time. Coefficients ktkt β,α ��
are OLS estimates of the equation�s unknown parameters and ikte  is its error term, or residual. We will
first generalise aggregation of observations of equation (1) without precise specification of aggregation
weights iktw , i.e.

(2) ( ) ( ) ikti iktktiktkti iktikti ikt ewβxαwpw ∑∑∑ +′+= ��log

where ( ) ktkt
G
ktkt βxpα �log� ′−=  is the OLS estimator of the constant term of a semi-logarithmic model, in

which ( ) ( )∑=
i iktkt

G
kt pnp log1log  and ∑ ′=′

i iktktkt xnx 1 . Thus, the first right-hand parenthetical
expression (i.e. fit) of equation (2) can be written as (direction: place the explicit clause of the constant
term into equation (2) and multiply each observation level equation from the left by �weights� iktw )

(3) ( ) ( ) ∑∑∑∑ ′+′=′+
i ktiktikti ktktikti

G
ktiktktiktkti ikt βxwβxw-pwβxαw �� log��

and the weighted sum of the residual respectively as

 (4) =∑ ikti iktew
 

( ) ( ) ∑∑∑∑ ′−′+
i ktiktikti ktktikti

G
ktikti iktikt βxwβxwpw-pw

    
��log log .

Presentation of equation (2) with two factors (3) and (4) seems to unnecessarily complicate the
aggregation problem. Its unconventional mathematics add to the confusion. However, the stratification
has a clear objective but its nature is difficult to see at the moment. Once the analysis has been
sufficiently generalised, it is time to examine its special cases by simplifying it. In other words, we will
next study a few suitable options for weights iktw . �Standard textbook selection� falls upon weights

ktikt nw 1= ,∀ ki Aa ∈ .  Then the price model for a stratum can be presented as (See e.g. Oaxaca, 1973;
Willis, 1986; Card, 1999; Vartiainen, 2001; Bayard, Hellerstein and Troske, 2003; Korkeamäki and
Kyyrä, 2002; Koev, 2003; Korkeamäki and Kyyrä, 2003;  Korkeamäki, Kyyrä and Luukkonen, 2004)

(5) ( ) ktktkt
G
kt βxαp ��log ′+= ,

where exogenous input variables are unweighted arithmetic means ∑ ′=′
i iktktkt xnx 1 , the output

variable is a logarithmic unweighted geometric mean and the parameters are ordinary OLS estimates.
The selection of weights ktikt nw 1= , ∀ ki Aa ∈  is based on the standard OLS method in which one
requirement is that residuals sum up to zero. Selection ktikt nw 1= , ∀ ki Aa ∈  meets this requirement
trivially. This requirement is usually not met with freely selectable weights as it does not even need to
be met - meeting it in OLS estimation is sufficient.  In other words, it does not prevent the use of other
aggregation weights. Let us next examine weights ∑==

i iktikt
Gw
iktikt qqww

 
 in which iktq  connotes

quantities at the observation level and its sum respectively their total for the strata level. Aggregation of
equations (3) and (4) then leads to the price model of stratum kA  which can be expressed as
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(6) ( ) kt
Gw

kt
Gw
kt

Gw
kt βxαp ��log ′+= ,

where ( ) ( ) ∑∑=
i ikti iktikt

Gw
kt qpqp loglog  is the logarithmic weighted geometric mean, the constant term

( ) kt
Gw

kt
Gw
kt

Gw
kt βxpα �log� ′−= , in which ∑∑ ′=′

i ikti
Gw

iktikt
Gw

kt qxqx .

Two other so-called elementary aggregate models for the strata are obtained analogously with weights
(3.5a) and (3.5b) deduced in Chapter 3. For instance, with observation weights

( ) , )1,(
i ktiktikt

A
iktikt npLpLww ∑== of equation (3.5b) the aggregation of equations (3) and (4) leads to

(7) ( ) kt
A

kt
A
kt

A
kt βxαp ��log ′+= ,

where ( ) ( )ikti
A
ikt

A
kt pwp loglog ∑=  is the logarithmic unweighted geometric mean, the constant term

( ) kt
A

kt
A
kt

A
kt βxpα �log� ′−= , in which ∑ ′=′

i ikt
A
ikt

A
kt xwx . With weights

( )∑∑==
ii
 , ),( iktiktiktiktiktikt

Aw
iktikt qpqLqpqLww   (see Chapter 3) we obtain analogously

(8) ( ) kt
Aw

kt
Aw
kt

Aw
kt βxαp ��log ′+= ,

where ( ) ( )ikti
Aw
ikt

Aw
kt pwp loglog ∑=  is the logarithm of the unweighted geometric mean, the constant term

( ) kt
Aw

kt
Aw
kt

Aw
kt βxpα �log� ′−= , in which ∑ ′=′

i ikt
Aw
ikt

Aw
kt xwx .

Elementary aggregate model (5) deduced from specification (1) is familiar to anyone having studied the
basics of statistical science because is follows direct from the OLS method (or alternatively from the
GLS method). Models (6), (7) and (8), by contrast, are not familiar because as far as we know they
have never been presented before in a parametric manner in a specification (1) situation. The
mathematics of these �average� stratum level price models is necessary - index calculation is almost
always based on either unweighted (aggregation of unit prices) or on weighted geometric or arithmetic
means. Let us go on to examine differences between these methods and their index applications.

In Chapter 3 we deduced the difference between a weighted arithmetic and an unweighted geometric
mean price for logarithmic prices (See Chapter 3 equation (3.6)). The difference between these
parameters is obtained trivially in a case of specification (1) when we subtract equation (5) from
equation (8).

(9) ( ) ≡−∑ − )log( 1
kt ikti

Aw
ikt pnw ( ) ktkt

Aw
ktkt

Aw
kt βxxαα ��� ′−′+−

A respective simple parametric presentation can also be used to calculate differences between other
statistics. The differences between the models can naturally be used to calculate differences of relative
changes (index) in the respective statistics.

We will finally examine index calculation with stratum price models as a parametric presentation. The
perspective is entirely new because as far as we know indices aggregated from the micro index level
have never before been presented with paramerisized price models.  We will free the analysis from
choice of index formula and present index weights generally as  Kkwkt ,...,1 ,* = . We will observe the
analysis in the Annex and aggregate price models (5) over all strata (instruction: place the constant term
estimator into equation (7) and use the basic aggregation clause in the footnote of page 6 (Vartia,
1979)).
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( ) ktktk ktktk kt
G
ktk kt βxwwpw ��log *** ′+= ∑∑∑ α  ⇔

( ) ( ) 




 −′+′+





 −′−′−= ∑∑ tktktk kttttktktk kttt

G
t

G
t ββxwβxββxwβxpp ������loglog **   ⇔

(10) ( ) ttt
G
t βxαp ��log ′+= ,

where the constant term ( ) tt
G
tt βxpα �log� ′−= , ( )G

tplog  is weighted geometric mean (in log-scale) and

ttt βxα �,,� ′ , respectively, are means calculated with index weights - they are �population parameters� and
are calculated as weighted means of stratum level parameters. When index weights sum up to one,






 −′∑ tktktk kt ββxw ��*  equals precisely weighted covariance ( )tt βx �,cov ′  between input variables and their

parameter equivalents.

Let us examine a few index weight options. When we select base period value share weights
∑=

k kk
Koev
k vvw τττ  (Koev, 2003, p. 26) for strata Ak  and aggregate prices models (5) over the strata,

Koev�s Log-Laspeyres� received the following expression (the last phase is based on the co-called
Oaxaca decomposition (Oaxaca, 1973))

(11)  ( ) ( )τττττττ
ττ

τ αααα ����'�''� ��'�loglog −+




 −+−=′−−+=








=








∑ tttttttG

G
t

G
k

G
kt

k
Koev
k ββxβxxβxβx

p
p

p
pw

whose exp transformation produces Koev�s index of dwelling prices

(12) ( ){ }




 





 +−





 +−= ττττ

τ

αα βxβxβxx
p
p

tttttG

G
t �'��'�exp�''exp

The left-hand side of the index expresses change in geometric mean prices weighted with fixed value
shares for the base period (classic Log-Laspeyres� classification index), the first right-hand term
describes the price ratio due to quality difference at base period valuation of the charasteristics and the
last term expresses change in prices standardised for quality. As product of the difference between the
quality adjustment and the index standardised for quality we obtain the precise change in geometric
mean prices. Thus index (12) expresses the following: Some of the change in geometric mean prices is
explained by quality change in characteristics and the remainder by price change standardised for
quality (i.e. qualitative characteristics at base period). J. van Dalen and B. Bode (2004) shows in the
paper �Estimation Biases in Quality-Adjusted Hedonic Price Indices�, that for the log-transformed
multiplicative hedonic regressions (12) is biased index formula. The next example is not.

In the second example we examine the logarithm of Laspeyres� index (Vartia, 1976, p. 126)

(13) 
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∑
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pq
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τ loglog ,  where  ( )
( )∑∑

=
k

Aw
kkk

Aw
ktk

Aw
kk

Aw
ktkL

k pq,pqL
p,qp qLw

τττ

τττ
τ 

By locating the estimator of the constant term in price model (8) and aggregating the differentiated
price models by stratum thus obtained over a stratum we receive (with the help of the basic aggregation
clause (Vartia, 1979) and Oaxaca decomposition (Oaxaca, 1973))

(14) ( ) ( )
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τ αα �����loglog
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With exp transformation of the equation we obtain a parametric presentation of Laspeyres price index

(15) ( ){ }
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ktk βxβxβxx

pq
pq

ττττ
ττ

τ αα ����exp� exp

in which all parameters Awβτ
�  and Aw

tβ
� , input and output variables are weighted means calculated with

weights KkwL
k ,...,1 , =τ defined in equation (13). The constant term is defined as

( ) Aw
t

Aw
t

Aw
t

Aw
t βxpα �log� ′−= . Equation (15) represents unbiased Laspeyres index formula for the log-

transformed multiplicative hedonic regressions developed for are weighted aritmetic averages and
expressed in parmetric form. Similar result naturally can be deduced for unweighted aritmetic averages
(see, eq. (7) and Tables 5.10a and Tables 5.10b).

Table 5.10a: Price aggregation of a semi-logarithmic model from observation level to stratum level for
OLS estimated behaviour (so-called elementary aggregate)

Price aggregation weights �Elementary aggregate�
Unweighted
geometric

ktikt nw 1= ( ) ktktkt
G
kt βxαp ��log ′+= , defined in

equations (2) and (5)
Weighted
geometric

∑==
i iktikt

Gw
iktikt qqww

 ( ) kt
Gw

kt
Gw
kt

Gw
kt βxαp ��log ′+= defined

in equation (6)
Unweighted
arithmetic

( ) , )1,(
i ktiktikt

A
iktikt npLpLww ∑== ( ) kt

A
kt

A
kt

A
kt βxαp ��log ′+= defined in

equation (7)
Weighted
arithmetic

( )∑∑==
ii
 , ),( iktiktiktiktiktikt

Aw
iktikt qpqLqpqLww ( ) kt

Aw
kt

Aw
kt

Aw
kt βxαp ��log ′+= defined

in equation (8)

Table 5.10b: Summary of hedonic indices of a semi-logarithmic price model in OLS optimum between
time periods τ, t

Price index Index formula as parametric expression: aggregated from
differences between elementary aggregate models at stratum level:
See Oaxaca decomposition and basic aggregation clause equation
(10).
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geometric
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see eq. (12) ( ){ }
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